Metamath Proof Explorer


Theorem undir

Description: Distributive law for union over intersection. Theorem 29 of Suppes p. 27. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion undir ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 undi ( 𝐶 ∪ ( 𝐴𝐵 ) ) = ( ( 𝐶𝐴 ) ∩ ( 𝐶𝐵 ) )
2 uncom ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( 𝐶 ∪ ( 𝐴𝐵 ) )
3 uncom ( 𝐴𝐶 ) = ( 𝐶𝐴 )
4 uncom ( 𝐵𝐶 ) = ( 𝐶𝐵 )
5 3 4 ineq12i ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) ) = ( ( 𝐶𝐴 ) ∩ ( 𝐶𝐵 ) )
6 1 2 5 3eqtr4i ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( ( 𝐴𝐶 ) ∩ ( 𝐵𝐶 ) )