| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islindf3.l |
⊢ 𝐿 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 3 |
2 1
|
lindff1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 –1-1→ ( Base ‘ 𝑊 ) ) |
| 4 |
3
|
3expa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 –1-1→ ( Base ‘ 𝑊 ) ) |
| 5 |
|
ssv |
⊢ ( Base ‘ 𝑊 ) ⊆ V |
| 6 |
|
f1ss |
⊢ ( ( 𝐹 : dom 𝐹 –1-1→ ( Base ‘ 𝑊 ) ∧ ( Base ‘ 𝑊 ) ⊆ V ) → 𝐹 : dom 𝐹 –1-1→ V ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 –1-1→ V ) |
| 8 |
|
lindfrn |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) |
| 9 |
8
|
adantlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ 𝐹 LIndF 𝑊 ) → ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) |
| 10 |
7 9
|
jca |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ 𝐹 LIndF 𝑊 ) → ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 12 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) → ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) |
| 13 |
|
f1f1orn |
⊢ ( 𝐹 : dom 𝐹 –1-1→ V → 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 ) |
| 14 |
|
f1of1 |
⊢ ( 𝐹 : dom 𝐹 –1-1-onto→ ran 𝐹 → 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝐹 : dom 𝐹 –1-1→ V → 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ) |
| 16 |
15
|
ad2antrl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) → 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ) |
| 17 |
|
f1linds |
⊢ ( ( 𝑊 ∈ LMod ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝐹 : dom 𝐹 –1-1→ ran 𝐹 ) → 𝐹 LIndF 𝑊 ) |
| 18 |
11 12 16 17
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) → 𝐹 LIndF 𝑊 ) |
| 19 |
10 18
|
impbida |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) → ( 𝐹 LIndF 𝑊 ↔ ( 𝐹 : dom 𝐹 –1-1→ V ∧ ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) ) ) |