Step |
Hyp |
Ref |
Expression |
1 |
|
lindff1.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
lindff1.l |
⊢ 𝐿 = ( Scalar ‘ 𝑊 ) |
3 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → 𝐹 LIndF 𝑊 ) |
4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → 𝑊 ∈ LMod ) |
5 |
1
|
lindff |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑊 ∈ LMod ) |
8 |
|
imassrn |
⊢ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ran 𝐹 |
9 |
6
|
frnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → ran 𝐹 ⊆ 𝐵 ) |
10 |
8 9
|
sstrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ 𝐵 ) |
12 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
13 |
1 12
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ 𝐵 ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
14 |
7 11 13
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
15 |
6
|
ffund |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → Fun 𝐹 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → Fun 𝐹 ) |
17 |
|
simprll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ dom 𝐹 ) |
18 |
16 17
|
jca |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) ) |
19 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦 ) ) |
20 |
19
|
biimpri |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ) |
23 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ ( dom 𝐹 ∖ { 𝑦 } ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
24 |
18 22 23
|
sylc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) |
25 |
14 24
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
26 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐿 ∈ NzRing ) |
27 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐹 LIndF 𝑊 ) |
28 |
|
simprlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ dom 𝐹 ) |
29 |
12 2
|
lindfind2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ) ∧ 𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹 ) → ¬ ( 𝐹 ‘ 𝑦 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
30 |
7 26 27 28 29
|
syl211anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝑦 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
31 |
|
nelne2 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ∧ ¬ ( 𝐹 ‘ 𝑦 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
32 |
25 30 31
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
33 |
32
|
expr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
33
|
necon4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
35 |
34
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
36 |
|
dff13 |
⊢ ( 𝐹 : dom 𝐹 –1-1→ 𝐵 ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
37 |
6 35 36
|
sylanbrc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 –1-1→ 𝐵 ) |