Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
1
|
lindff |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ) |
4 |
3
|
frnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ran 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
5 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ 𝑦 ∈ dom 𝐹 ) → 𝑊 ∈ LMod ) |
6 |
|
imassrn |
⊢ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ran 𝐹 |
7 |
6 4
|
sstrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝑊 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝑊 ) ) |
9 |
3
|
ffund |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → Fun 𝐹 ) |
10 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑥 ∈ ran 𝐹 ∧ 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
12 |
|
fvelrnb |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ dom 𝐹 ( 𝐹 ‘ 𝑘 ) = 𝑥 ) ) |
13 |
11 12
|
sylbi |
⊢ ( Fun 𝐹 → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ dom 𝐹 ( 𝐹 ‘ 𝑘 ) = 𝑥 ) ) |
14 |
13
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ dom 𝐹 ( 𝐹 ‘ 𝑘 ) = 𝑥 ) ) |
15 |
|
difss |
⊢ ( dom 𝐹 ∖ { 𝑦 } ) ⊆ dom 𝐹 |
16 |
15
|
jctr |
⊢ ( Fun 𝐹 → ( Fun 𝐹 ∧ ( dom 𝐹 ∖ { 𝑦 } ) ⊆ dom 𝐹 ) ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) → ( Fun 𝐹 ∧ ( dom 𝐹 ∖ { 𝑦 } ) ⊆ dom 𝐹 ) ) |
18 |
|
simpl |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) → 𝑘 ∈ dom 𝐹 ) |
19 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑦 ) ) |
20 |
19
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) → 𝑘 ≠ 𝑦 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) → 𝑘 ≠ 𝑦 ) |
22 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ 𝑘 ≠ 𝑦 ) ) |
23 |
18 21 22
|
sylanbrc |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) → 𝑘 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ) |
24 |
23
|
adantl |
⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑘 ∈ ( dom 𝐹 ∖ { 𝑦 } ) ) |
25 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( dom 𝐹 ∖ { 𝑦 } ) ⊆ dom 𝐹 ) → ( 𝑘 ∈ ( dom 𝐹 ∖ { 𝑦 } ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
26 |
17 24 25
|
sylc |
⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) |
27 |
26
|
expr |
⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
28 |
|
neeq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
29 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ↔ 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
30 |
28 29
|
imbi12d |
⊢ ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ≠ ( 𝐹 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ↔ ( 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) ) |
31 |
27 30
|
syl5ibcom |
⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ 𝑘 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) ) |
32 |
31
|
rexlimdva |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ∃ 𝑘 ∈ dom 𝐹 ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) ) |
33 |
14 32
|
sylbid |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) ) |
34 |
33
|
impd |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑥 ≠ ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
35 |
10 34
|
syl5bi |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑥 ∈ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) → 𝑥 ∈ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
36 |
35
|
ssrdv |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) |
37 |
9 36
|
sylan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) |
38 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
39 |
1 38
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝑊 ) ∧ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
40 |
5 8 37 39
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
41 |
40
|
adantrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
42 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝐹 LIndF 𝑊 ) |
43 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑦 ∈ dom 𝐹 ) |
44 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
45 |
44
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
46 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
47 |
46
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
49 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
50 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
51 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
52 |
48 38 49 50 51
|
lindfind |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
53 |
42 43 45 47 52
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { 𝑦 } ) ) ) ) |
54 |
41 53
|
ssneldd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) ∧ ( 𝑦 ∈ dom 𝐹 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
55 |
54
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
56 |
9
|
funfnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → 𝐹 Fn dom 𝐹 ) |
57 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ) |
58 |
|
sneq |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → { 𝑥 } = { ( 𝐹 ‘ 𝑦 ) } ) |
59 |
58
|
difeq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ran 𝐹 ∖ { 𝑥 } ) = ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) |
60 |
59
|
fveq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) = ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
61 |
57 60
|
eleq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) ) |
62 |
61
|
notbid |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) ) |
63 |
62
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) ) |
64 |
63
|
ralrn |
⊢ ( 𝐹 Fn dom 𝐹 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) ) |
65 |
56 64
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { ( 𝐹 ‘ 𝑦 ) } ) ) ) ) |
66 |
55 65
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ) |
67 |
1 48 38 49 51 50
|
islinds2 |
⊢ ( 𝑊 ∈ LMod → ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( ran 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ( ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ↔ ( ran 𝐹 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ran 𝐹 ∖ { 𝑥 } ) ) ) ) ) |
69 |
4 66 68
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → ran 𝐹 ∈ ( LIndS ‘ 𝑊 ) ) |