| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 2 |
1
|
lindff |
⊢ ( ( 𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ) |
| 5 |
|
f1f |
⊢ ( 𝐺 : 𝐾 –1-1→ dom 𝐹 → 𝐺 : 𝐾 ⟶ dom 𝐹 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐺 : 𝐾 ⟶ dom 𝐹 ) |
| 7 |
|
fco |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : 𝐾 ⟶ dom 𝐹 ) → ( 𝐹 ∘ 𝐺 ) : 𝐾 ⟶ ( Base ‘ 𝑊 ) ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐹 ∘ 𝐺 ) : 𝐾 ⟶ ( Base ‘ 𝑊 ) ) |
| 9 |
8
|
ffdmd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝐹 LIndF 𝑊 ) |
| 11 |
6
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → 𝐺 : 𝐾 ⟶ dom 𝐹 ) |
| 12 |
8
|
fdmd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → dom ( 𝐹 ∘ 𝐺 ) = 𝐾 ) |
| 13 |
12
|
eleq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → 𝑥 ∈ 𝐾 ) |
| 15 |
11 14
|
ffvelcdmd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ dom 𝐹 ) |
| 16 |
15
|
adantrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ dom 𝐹 ) |
| 17 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 |
17
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 |
19
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 22 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 23 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 26 |
21 22 23 24 25
|
lindfind |
⊢ ( ( ( 𝐹 LIndF 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) |
| 27 |
10 16 18 20 26
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) |
| 28 |
|
f1fn |
⊢ ( 𝐺 : 𝐾 –1-1→ dom 𝐹 → 𝐺 Fn 𝐾 ) |
| 29 |
28
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐺 Fn 𝐾 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → 𝐺 Fn 𝐾 ) |
| 31 |
|
fvco2 |
⊢ ( ( 𝐺 Fn 𝐾 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 32 |
30 14 31
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 34 |
33
|
eleq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ) ) |
| 35 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 36 |
|
imassrn |
⊢ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ⊆ ran 𝐹 |
| 37 |
4
|
frnd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ran 𝐹 ⊆ ( Base ‘ 𝑊 ) ) |
| 38 |
36 37
|
sstrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) ) |
| 40 |
|
imaco |
⊢ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) = ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) |
| 41 |
12
|
difeq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) = ( 𝐾 ∖ { 𝑥 } ) ) |
| 42 |
41
|
imaeq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) = ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) ) |
| 43 |
|
df-f1 |
⊢ ( 𝐺 : 𝐾 –1-1→ dom 𝐹 ↔ ( 𝐺 : 𝐾 ⟶ dom 𝐹 ∧ Fun ◡ 𝐺 ) ) |
| 44 |
43
|
simprbi |
⊢ ( 𝐺 : 𝐾 –1-1→ dom 𝐹 → Fun ◡ 𝐺 ) |
| 45 |
44
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → Fun ◡ 𝐺 ) |
| 46 |
|
imadif |
⊢ ( Fun ◡ 𝐺 → ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) = ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) = ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ) |
| 48 |
42 47
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) = ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) = ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ) |
| 50 |
|
fnsnfv |
⊢ ( ( 𝐺 Fn 𝐾 ∧ 𝑥 ∈ 𝐾 ) → { ( 𝐺 ‘ 𝑥 ) } = ( 𝐺 “ { 𝑥 } ) ) |
| 51 |
29 50
|
sylan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → { ( 𝐺 ‘ 𝑥 ) } = ( 𝐺 “ { 𝑥 } ) ) |
| 52 |
51
|
difeq2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐺 “ 𝐾 ) ∖ { ( 𝐺 ‘ 𝑥 ) } ) = ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ) |
| 53 |
|
imassrn |
⊢ ( 𝐺 “ 𝐾 ) ⊆ ran 𝐺 |
| 54 |
6
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → 𝐺 : 𝐾 ⟶ dom 𝐹 ) |
| 55 |
54
|
frnd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐺 ⊆ dom 𝐹 ) |
| 56 |
53 55
|
sstrid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 “ 𝐾 ) ⊆ dom 𝐹 ) |
| 57 |
56
|
ssdifd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐺 “ 𝐾 ) ∖ { ( 𝐺 ‘ 𝑥 ) } ) ⊆ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) |
| 58 |
52 57
|
eqsstrrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐺 “ 𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) |
| 59 |
49 58
|
eqsstrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) |
| 60 |
|
imass2 |
⊢ ( ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) → ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) |
| 62 |
40 61
|
eqsstrid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) |
| 63 |
1 22
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) ∧ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) |
| 64 |
35 39 62 63
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) |
| 65 |
14 64
|
syldan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) |
| 66 |
65
|
sseld |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) ) |
| 67 |
34 66
|
sylbid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) ) |
| 68 |
67
|
adantrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺 ‘ 𝑥 ) } ) ) ) ) ) |
| 69 |
27 68
|
mtod |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ) |
| 70 |
69
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ∀ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ) |
| 71 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝑊 ∈ LMod ) |
| 72 |
|
rellindf |
⊢ Rel LIndF |
| 73 |
72
|
brrelex1i |
⊢ ( 𝐹 LIndF 𝑊 → 𝐹 ∈ V ) |
| 74 |
73
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐹 ∈ V ) |
| 75 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐺 : 𝐾 –1-1→ dom 𝐹 ) |
| 76 |
74
|
dmexd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → dom 𝐹 ∈ V ) |
| 77 |
|
f1dmex |
⊢ ( ( 𝐺 : 𝐾 –1-1→ dom 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐾 ∈ V ) |
| 78 |
75 76 77
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐾 ∈ V ) |
| 79 |
6 78
|
fexd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → 𝐺 ∈ V ) |
| 80 |
|
coexg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 81 |
74 79 80
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 82 |
1 21 22 23 25 24
|
islindf |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐹 ∘ 𝐺 ) ∈ V ) → ( ( 𝐹 ∘ 𝐺 ) LIndF 𝑊 ↔ ( ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ) ) ) |
| 83 |
71 81 82
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( ( 𝐹 ∘ 𝐺 ) LIndF 𝑊 ↔ ( ( 𝐹 ∘ 𝐺 ) : dom ( 𝐹 ∘ 𝐺 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∘ 𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹 ∘ 𝐺 ) “ ( dom ( 𝐹 ∘ 𝐺 ) ∖ { 𝑥 } ) ) ) ) ) ) |
| 84 |
9 70 83
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺 : 𝐾 –1-1→ dom 𝐹 ) → ( 𝐹 ∘ 𝐺 ) LIndF 𝑊 ) |