Metamath Proof Explorer


Theorem f1lindf

Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion f1lindf ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹𝐺 ) LIndF 𝑊 )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
2 1 lindff ( ( 𝐹 LIndF 𝑊𝑊 ∈ LMod ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) )
3 2 ancoms ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) )
4 3 3adant3 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) )
5 f1f ( 𝐺 : 𝐾1-1→ dom 𝐹𝐺 : 𝐾 ⟶ dom 𝐹 )
6 5 3ad2ant3 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐺 : 𝐾 ⟶ dom 𝐹 )
7 fco ( ( 𝐹 : dom 𝐹 ⟶ ( Base ‘ 𝑊 ) ∧ 𝐺 : 𝐾 ⟶ dom 𝐹 ) → ( 𝐹𝐺 ) : 𝐾 ⟶ ( Base ‘ 𝑊 ) )
8 4 6 7 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹𝐺 ) : 𝐾 ⟶ ( Base ‘ 𝑊 ) )
9 8 ffdmd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ( Base ‘ 𝑊 ) )
10 simpl2 ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝐹 LIndF 𝑊 )
11 6 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → 𝐺 : 𝐾 ⟶ dom 𝐹 )
12 8 fdmd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → dom ( 𝐹𝐺 ) = 𝐾 )
13 12 eleq2d ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝑥 ∈ dom ( 𝐹𝐺 ) ↔ 𝑥𝐾 ) )
14 13 biimpa ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → 𝑥𝐾 )
15 11 14 ffvelrnd ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( 𝐺𝑥 ) ∈ dom 𝐹 )
16 15 adantrr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝐺𝑥 ) ∈ dom 𝐹 )
17 eldifi ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
18 17 ad2antll ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
19 eldifsni ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
20 19 ad2antll ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
21 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
22 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
23 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
24 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
25 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
26 21 22 23 24 25 lindfind ( ( ( 𝐹 LIndF 𝑊 ∧ ( 𝐺𝑥 ) ∈ dom 𝐹 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) → ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) )
27 10 16 18 20 26 syl22anc ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) )
28 f1fn ( 𝐺 : 𝐾1-1→ dom 𝐹𝐺 Fn 𝐾 )
29 28 3ad2ant3 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐺 Fn 𝐾 )
30 29 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → 𝐺 Fn 𝐾 )
31 fvco2 ( ( 𝐺 Fn 𝐾𝑥𝐾 ) → ( ( 𝐹𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺𝑥 ) ) )
32 30 14 31 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺𝑥 ) ) )
33 32 oveq2d ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) = ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) )
34 33 eleq1d ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ) )
35 simpl1 ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → 𝑊 ∈ LMod )
36 imassrn ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ⊆ ran 𝐹
37 4 frnd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ran 𝐹 ⊆ ( Base ‘ 𝑊 ) )
38 36 37 sstrid ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) )
39 38 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) )
40 imaco ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) = ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) )
41 12 difeq1d ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) = ( 𝐾 ∖ { 𝑥 } ) )
42 41 imaeq2d ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) = ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) )
43 df-f1 ( 𝐺 : 𝐾1-1→ dom 𝐹 ↔ ( 𝐺 : 𝐾 ⟶ dom 𝐹 ∧ Fun 𝐺 ) )
44 43 simprbi ( 𝐺 : 𝐾1-1→ dom 𝐹 → Fun 𝐺 )
45 44 3ad2ant3 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → Fun 𝐺 )
46 imadif ( Fun 𝐺 → ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) = ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) )
47 45 46 syl ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐺 “ ( 𝐾 ∖ { 𝑥 } ) ) = ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) )
48 42 47 eqtrd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) = ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) )
49 48 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) = ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) )
50 fnsnfv ( ( 𝐺 Fn 𝐾𝑥𝐾 ) → { ( 𝐺𝑥 ) } = ( 𝐺 “ { 𝑥 } ) )
51 29 50 sylan ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → { ( 𝐺𝑥 ) } = ( 𝐺 “ { 𝑥 } ) )
52 51 difeq2d ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( ( 𝐺𝐾 ) ∖ { ( 𝐺𝑥 ) } ) = ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) )
53 imassrn ( 𝐺𝐾 ) ⊆ ran 𝐺
54 6 adantr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → 𝐺 : 𝐾 ⟶ dom 𝐹 )
55 54 frnd ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ran 𝐺 ⊆ dom 𝐹 )
56 53 55 sstrid ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( 𝐺𝐾 ) ⊆ dom 𝐹 )
57 56 ssdifd ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( ( 𝐺𝐾 ) ∖ { ( 𝐺𝑥 ) } ) ⊆ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) )
58 52 57 eqsstrrd ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( ( 𝐺𝐾 ) ∖ ( 𝐺 “ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) )
59 49 58 eqsstrd ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) )
60 imass2 ( ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) → ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) )
61 59 60 syl ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( 𝐹 “ ( 𝐺 “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) )
62 40 61 eqsstrid ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) )
63 1 22 lspss ( ( 𝑊 ∈ LMod ∧ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ⊆ ( Base ‘ 𝑊 ) ∧ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ⊆ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) )
64 35 39 62 63 syl3anc ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥𝐾 ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) )
65 14 64 syldan ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) )
66 65 sseld ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) ) )
67 34 66 sylbid ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ 𝑥 ∈ dom ( 𝐹𝐺 ) ) → ( ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) ) )
68 67 adantrr ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹 “ ( dom 𝐹 ∖ { ( 𝐺𝑥 ) } ) ) ) ) )
69 27 68 mtod ( ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) ∧ ( 𝑥 ∈ dom ( 𝐹𝐺 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) )
70 69 ralrimivva ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ∀ 𝑥 ∈ dom ( 𝐹𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) )
71 simp1 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝑊 ∈ LMod )
72 rellindf Rel LIndF
73 72 brrelex1i ( 𝐹 LIndF 𝑊𝐹 ∈ V )
74 73 3ad2ant2 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐹 ∈ V )
75 simp3 ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐺 : 𝐾1-1→ dom 𝐹 )
76 74 dmexd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → dom 𝐹 ∈ V )
77 f1dmex ( ( 𝐺 : 𝐾1-1→ dom 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐾 ∈ V )
78 75 76 77 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐾 ∈ V )
79 6 78 fexd ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → 𝐺 ∈ V )
80 coexg ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹𝐺 ) ∈ V )
81 74 79 80 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹𝐺 ) ∈ V )
82 1 21 22 23 25 24 islindf ( ( 𝑊 ∈ LMod ∧ ( 𝐹𝐺 ) ∈ V ) → ( ( 𝐹𝐺 ) LIndF 𝑊 ↔ ( ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ) ) )
83 71 81 82 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( ( 𝐹𝐺 ) LIndF 𝑊 ↔ ( ( 𝐹𝐺 ) : dom ( 𝐹𝐺 ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹𝐺 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠𝑊 ) ( ( 𝐹𝐺 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹𝐺 ) “ ( dom ( 𝐹𝐺 ) ∖ { 𝑥 } ) ) ) ) ) )
84 9 70 83 mpbir2and ( ( 𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺 : 𝐾1-1→ dom 𝐹 ) → ( 𝐹𝐺 ) LIndF 𝑊 )