Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
frnd |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
3 |
|
ssexg |
⊢ ( ( ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ran 𝐹 ∈ V ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ran 𝐹 ∈ V ) |
5 |
4
|
ex |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐵 ∈ 𝐶 → ran 𝐹 ∈ V ) ) |
6 |
|
f1cnv |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 ) |
7 |
|
f1ofo |
⊢ ( ◡ 𝐹 : ran 𝐹 –1-1-onto→ 𝐴 → ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 ) |
8 |
6 7
|
syl |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 ) |
9 |
|
fornex |
⊢ ( ran 𝐹 ∈ V → ( ◡ 𝐹 : ran 𝐹 –onto→ 𝐴 → 𝐴 ∈ V ) ) |
10 |
5 8 9
|
syl6ci |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐵 ∈ 𝐶 → 𝐴 ∈ V ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |