Metamath Proof Explorer


Theorem f1f

Description: A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996)

Ref Expression
Assertion f1f ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 df-f1 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) )
2 1 simplbi ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴𝐵 )