| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
lindff |
|
| 3 |
2
|
ancoms |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
f1f |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
fco |
|
| 8 |
4 6 7
|
syl2anc |
|
| 9 |
8
|
ffdmd |
|
| 10 |
|
simpl2 |
|
| 11 |
6
|
adantr |
|
| 12 |
8
|
fdmd |
|
| 13 |
12
|
eleq2d |
|
| 14 |
13
|
biimpa |
|
| 15 |
11 14
|
ffvelcdmd |
|
| 16 |
15
|
adantrr |
|
| 17 |
|
eldifi |
|
| 18 |
17
|
ad2antll |
|
| 19 |
|
eldifsni |
|
| 20 |
19
|
ad2antll |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
21 22 23 24 25
|
lindfind |
|
| 27 |
10 16 18 20 26
|
syl22anc |
|
| 28 |
|
f1fn |
|
| 29 |
28
|
3ad2ant3 |
|
| 30 |
29
|
adantr |
|
| 31 |
|
fvco2 |
|
| 32 |
30 14 31
|
syl2anc |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
eleq1d |
|
| 35 |
|
simpl1 |
|
| 36 |
|
imassrn |
|
| 37 |
4
|
frnd |
|
| 38 |
36 37
|
sstrid |
|
| 39 |
38
|
adantr |
|
| 40 |
|
imaco |
|
| 41 |
12
|
difeq1d |
|
| 42 |
41
|
imaeq2d |
|
| 43 |
|
df-f1 |
|
| 44 |
43
|
simprbi |
|
| 45 |
44
|
3ad2ant3 |
|
| 46 |
|
imadif |
|
| 47 |
45 46
|
syl |
|
| 48 |
42 47
|
eqtrd |
|
| 49 |
48
|
adantr |
|
| 50 |
|
fnsnfv |
|
| 51 |
29 50
|
sylan |
|
| 52 |
51
|
difeq2d |
|
| 53 |
|
imassrn |
|
| 54 |
6
|
adantr |
|
| 55 |
54
|
frnd |
|
| 56 |
53 55
|
sstrid |
|
| 57 |
56
|
ssdifd |
|
| 58 |
52 57
|
eqsstrrd |
|
| 59 |
49 58
|
eqsstrd |
|
| 60 |
|
imass2 |
|
| 61 |
59 60
|
syl |
|
| 62 |
40 61
|
eqsstrid |
|
| 63 |
1 22
|
lspss |
|
| 64 |
35 39 62 63
|
syl3anc |
|
| 65 |
14 64
|
syldan |
|
| 66 |
65
|
sseld |
|
| 67 |
34 66
|
sylbid |
|
| 68 |
67
|
adantrr |
|
| 69 |
27 68
|
mtod |
|
| 70 |
69
|
ralrimivva |
|
| 71 |
|
simp1 |
|
| 72 |
|
rellindf |
|
| 73 |
72
|
brrelex1i |
|
| 74 |
73
|
3ad2ant2 |
|
| 75 |
|
simp3 |
|
| 76 |
74
|
dmexd |
|
| 77 |
|
f1dmex |
|
| 78 |
75 76 77
|
syl2anc |
|
| 79 |
6 78
|
fexd |
|
| 80 |
|
coexg |
|
| 81 |
74 79 80
|
syl2anc |
|
| 82 |
1 21 22 23 25 24
|
islindf |
|
| 83 |
71 81 82
|
syl2anc |
|
| 84 |
9 70 83
|
mpbir2and |
|