Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
lindff |
|
3 |
2
|
ancoms |
|
4 |
3
|
3adant3 |
|
5 |
|
f1f |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
fco |
|
8 |
4 6 7
|
syl2anc |
|
9 |
8
|
ffdmd |
|
10 |
|
simpl2 |
|
11 |
6
|
adantr |
|
12 |
8
|
fdmd |
|
13 |
12
|
eleq2d |
|
14 |
13
|
biimpa |
|
15 |
11 14
|
ffvelrnd |
|
16 |
15
|
adantrr |
|
17 |
|
eldifi |
|
18 |
17
|
ad2antll |
|
19 |
|
eldifsni |
|
20 |
19
|
ad2antll |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
21 22 23 24 25
|
lindfind |
|
27 |
10 16 18 20 26
|
syl22anc |
|
28 |
|
f1fn |
|
29 |
28
|
3ad2ant3 |
|
30 |
29
|
adantr |
|
31 |
|
fvco2 |
|
32 |
30 14 31
|
syl2anc |
|
33 |
32
|
oveq2d |
|
34 |
33
|
eleq1d |
|
35 |
|
simpl1 |
|
36 |
|
imassrn |
|
37 |
4
|
frnd |
|
38 |
36 37
|
sstrid |
|
39 |
38
|
adantr |
|
40 |
|
imaco |
|
41 |
12
|
difeq1d |
|
42 |
41
|
imaeq2d |
|
43 |
|
df-f1 |
|
44 |
43
|
simprbi |
|
45 |
44
|
3ad2ant3 |
|
46 |
|
imadif |
|
47 |
45 46
|
syl |
|
48 |
42 47
|
eqtrd |
|
49 |
48
|
adantr |
|
50 |
|
fnsnfv |
|
51 |
29 50
|
sylan |
|
52 |
51
|
difeq2d |
|
53 |
|
imassrn |
|
54 |
6
|
adantr |
|
55 |
54
|
frnd |
|
56 |
53 55
|
sstrid |
|
57 |
56
|
ssdifd |
|
58 |
52 57
|
eqsstrrd |
|
59 |
49 58
|
eqsstrd |
|
60 |
|
imass2 |
|
61 |
59 60
|
syl |
|
62 |
40 61
|
eqsstrid |
|
63 |
1 22
|
lspss |
|
64 |
35 39 62 63
|
syl3anc |
|
65 |
14 64
|
syldan |
|
66 |
65
|
sseld |
|
67 |
34 66
|
sylbid |
|
68 |
67
|
adantrr |
|
69 |
27 68
|
mtod |
|
70 |
69
|
ralrimivva |
|
71 |
|
simp1 |
|
72 |
|
rellindf |
|
73 |
72
|
brrelex1i |
|
74 |
73
|
3ad2ant2 |
|
75 |
|
simp3 |
|
76 |
74
|
dmexd |
|
77 |
|
f1dmex |
|
78 |
75 76 77
|
syl2anc |
|
79 |
6 78
|
fexd |
|
80 |
|
coexg |
|
81 |
74 79 80
|
syl2anc |
|
82 |
1 21 22 23 25 24
|
islindf |
|
83 |
71 81 82
|
syl2anc |
|
84 |
9 70 83
|
mpbir2and |
|