Metamath Proof Explorer


Theorem lspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by NM, 11-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v V = Base W
lspss.n N = LSpan W
Assertion lspss W LMod U V T U N T N U

Proof

Step Hyp Ref Expression
1 lspss.v V = Base W
2 lspss.n N = LSpan W
3 simpl3 W LMod U V T U t LSubSp W T U
4 sstr2 T U U t T t
5 3 4 syl W LMod U V T U t LSubSp W U t T t
6 5 ss2rabdv W LMod U V T U t LSubSp W | U t t LSubSp W | T t
7 intss t LSubSp W | U t t LSubSp W | T t t LSubSp W | T t t LSubSp W | U t
8 6 7 syl W LMod U V T U t LSubSp W | T t t LSubSp W | U t
9 simp1 W LMod U V T U W LMod
10 simp3 W LMod U V T U T U
11 simp2 W LMod U V T U U V
12 10 11 sstrd W LMod U V T U T V
13 eqid LSubSp W = LSubSp W
14 1 13 2 lspval W LMod T V N T = t LSubSp W | T t
15 9 12 14 syl2anc W LMod U V T U N T = t LSubSp W | T t
16 1 13 2 lspval W LMod U V N U = t LSubSp W | U t
17 16 3adant3 W LMod U V T U N U = t LSubSp W | U t
18 8 15 17 3sstr4d W LMod U V T U N T N U