Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)

Ref Expression
Hypothesis ss2rabdv.1 φxAψχ
Assertion ss2rabdv φxA|ψxA|χ

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 φxAψχ
2 1 ralrimiva φxAψχ
3 ss2rab xA|ψxA|χxAψχ
4 2 3 sylibr φxA|ψxA|χ