Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
Assertion | ss2rabdv | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A ( ps -> ch ) ) |
3 | ss2rab | |- ( { x e. A | ps } C_ { x e. A | ch } <-> A. x e. A ( ps -> ch ) ) |
|
4 | 2 3 | sylibr | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |