Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)

Ref Expression
Hypothesis ss2rabdv.1
|- ( ( ph /\ x e. A ) -> ( ps -> ch ) )
Assertion ss2rabdv
|- ( ph -> { x e. A | ps } C_ { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 ss2rabdv.1
 |-  ( ( ph /\ x e. A ) -> ( ps -> ch ) )
2 1 ralrimiva
 |-  ( ph -> A. x e. A ( ps -> ch ) )
3 ss2rab
 |-  ( { x e. A | ps } C_ { x e. A | ch } <-> A. x e. A ( ps -> ch ) )
4 2 3 sylibr
 |-  ( ph -> { x e. A | ps } C_ { x e. A | ch } )