Metamath Proof Explorer
Description: Deduction of restricted abstraction subclass from implication.
(Contributed by NM, 30-May-2006) Avoid axioms. (Revised by TM, 1-Feb-2026)
|
|
Ref |
Expression |
|
Hypothesis |
ss2rabdv.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
ss2rabdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ss2rabdv.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) |
| 2 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
| 3 |
2
|
ss2rabd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |