Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ss2rabdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
Assertion | ss2rabdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
3 | ss2rab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) | |
4 | 2 3 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |