Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)

Ref Expression
Hypothesis ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ss2rabdv ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
3 ss2rab ( { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } ↔ ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
4 2 3 sylibr ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )