Metamath Proof Explorer
		
		
		
		Description:  Inference of restricted abstraction subclass from implication.
       (Contributed by NM, 14-Oct-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ss2rabi.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
				
					|  | Assertion | ss2rabi | ⊢  { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ss2rabi.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 2 |  | ss2rab | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 ) ) | 
						
							| 3 | 2 1 | mprgbir | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } |