Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion rabss2 ( 𝐴𝐵 → { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐵𝜑 } )

Proof

Step Hyp Ref Expression
1 pm3.45 ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
2 1 alimi ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
3 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 ss2ab ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
5 2 3 4 3imtr4i ( 𝐴𝐵 → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐵𝜑 ) } )
6 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
7 df-rab { 𝑥𝐵𝜑 } = { 𝑥 ∣ ( 𝑥𝐵𝜑 ) }
8 5 6 7 3sstr4g ( 𝐴𝐵 → { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐵𝜑 } )