| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm3.45 | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  →  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 3 |  | df-ss | ⊢ ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 4 |  | ss2ab | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 5 | 2 3 4 | 3imtr4i | ⊢ ( 𝐴  ⊆  𝐵  →  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) } ) | 
						
							| 6 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 7 |  | df-rab | ⊢ { 𝑥  ∈  𝐵  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  𝜑 ) } | 
						
							| 8 | 5 6 7 | 3sstr4g | ⊢ ( 𝐴  ⊆  𝐵  →  { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐵  ∣  𝜑 } ) |