Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion rabss2 ABxA|φxB|φ

Proof

Step Hyp Ref Expression
1 pm3.45 xAxBxAφxBφ
2 1 alimi xxAxBxxAφxBφ
3 dfss2 ABxxAxB
4 ss2ab x|xAφx|xBφxxAφxBφ
5 2 3 4 3imtr4i ABx|xAφx|xBφ
6 df-rab xA|φ=x|xAφ
7 df-rab xB|φ=x|xBφ
8 5 6 7 3sstr4g ABxA|φxB|φ