| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 2 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜓 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) } | 
						
							| 3 | 1 2 | sseq12i | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) } ) | 
						
							| 4 |  | ss2ab | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜓 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 5 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 6 |  | imdistan | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 8 | 5 7 | bitr2i | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 ) ) | 
						
							| 9 | 3 4 8 | 3bitri | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 ) ) |