| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 2 | 1 | sseq1i | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  𝐵  ↔  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  𝐵 ) | 
						
							| 3 |  | abss | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ⊆  𝐵  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 4 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝑥  ∈  𝐵 ) ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝑥  ∈  𝐵 ) ) ) | 
						
							| 6 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝑥  ∈  𝐵 ) ) ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  ∈  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 2 3 7 | 3bitri | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ⊆  𝐵  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  ∈  𝐵 ) ) |