Metamath Proof Explorer


Theorem rabss

Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion rabss xA|φBxAφxB

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 1 sseq1i xA|φBx|xAφB
3 abss x|xAφBxxAφxB
4 impexp xAφxBxAφxB
5 4 albii xxAφxBxxAφxB
6 df-ral xAφxBxxAφxB
7 5 6 bitr4i xxAφxBxAφxB
8 2 3 7 3bitri xA|φBxAφxB