Metamath Proof Explorer


Theorem ss2rabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999) Avoid axioms. (Revised by SN, 4-Feb-2025)

Ref Expression
Hypothesis ss2rabi.1
|- ( x e. A -> ( ph -> ps ) )
Assertion ss2rabi
|- { x e. A | ph } C_ { x e. A | ps }

Proof

Step Hyp Ref Expression
1 ss2rabi.1
 |-  ( x e. A -> ( ph -> ps ) )
2 1 adantl
 |-  ( ( T. /\ x e. A ) -> ( ph -> ps ) )
3 2 ss2rabdv
 |-  ( T. -> { x e. A | ph } C_ { x e. A | ps } )
4 3 mptru
 |-  { x e. A | ph } C_ { x e. A | ps }