Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999) Avoid axioms. (Revised by SN, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabi.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| Assertion | ss2rabi | |- { x e. A | ph } C_ { x e. A | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabi.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
| 2 | 1 | adantl | |- ( ( T. /\ x e. A ) -> ( ph -> ps ) ) |
| 3 | 2 | ss2rabdv | |- ( T. -> { x e. A | ph } C_ { x e. A | ps } ) |
| 4 | 3 | mptru | |- { x e. A | ph } C_ { x e. A | ps } |