Metamath Proof Explorer


Theorem ffdmd

Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ffdmd.1 φF:AB
Assertion ffdmd φF:domFB

Proof

Step Hyp Ref Expression
1 ffdmd.1 φF:AB
2 ffdm F:ABF:domFBdomFA
3 1 2 syl φF:domFBdomFA
4 3 simpld φF:domFB