| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 2 |
1
|
lindff |
|- ( ( F LIndF W /\ W e. LMod ) -> F : dom F --> ( Base ` W ) ) |
| 3 |
2
|
ancoms |
|- ( ( W e. LMod /\ F LIndF W ) -> F : dom F --> ( Base ` W ) ) |
| 4 |
3
|
frnd |
|- ( ( W e. LMod /\ F LIndF W ) -> ran F C_ ( Base ` W ) ) |
| 5 |
|
simpll |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ y e. dom F ) -> W e. LMod ) |
| 6 |
|
imassrn |
|- ( F " ( dom F \ { y } ) ) C_ ran F |
| 7 |
6 4
|
sstrid |
|- ( ( W e. LMod /\ F LIndF W ) -> ( F " ( dom F \ { y } ) ) C_ ( Base ` W ) ) |
| 8 |
7
|
adantr |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ y e. dom F ) -> ( F " ( dom F \ { y } ) ) C_ ( Base ` W ) ) |
| 9 |
3
|
ffund |
|- ( ( W e. LMod /\ F LIndF W ) -> Fun F ) |
| 10 |
|
eldifsn |
|- ( x e. ( ran F \ { ( F ` y ) } ) <-> ( x e. ran F /\ x =/= ( F ` y ) ) ) |
| 11 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 12 |
|
fvelrnb |
|- ( F Fn dom F -> ( x e. ran F <-> E. k e. dom F ( F ` k ) = x ) ) |
| 13 |
11 12
|
sylbi |
|- ( Fun F -> ( x e. ran F <-> E. k e. dom F ( F ` k ) = x ) ) |
| 14 |
13
|
adantr |
|- ( ( Fun F /\ y e. dom F ) -> ( x e. ran F <-> E. k e. dom F ( F ` k ) = x ) ) |
| 15 |
|
difss |
|- ( dom F \ { y } ) C_ dom F |
| 16 |
15
|
jctr |
|- ( Fun F -> ( Fun F /\ ( dom F \ { y } ) C_ dom F ) ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( Fun F /\ y e. dom F ) /\ ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) ) -> ( Fun F /\ ( dom F \ { y } ) C_ dom F ) ) |
| 18 |
|
simpl |
|- ( ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) -> k e. dom F ) |
| 19 |
|
fveq2 |
|- ( k = y -> ( F ` k ) = ( F ` y ) ) |
| 20 |
19
|
necon3i |
|- ( ( F ` k ) =/= ( F ` y ) -> k =/= y ) |
| 21 |
20
|
adantl |
|- ( ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) -> k =/= y ) |
| 22 |
|
eldifsn |
|- ( k e. ( dom F \ { y } ) <-> ( k e. dom F /\ k =/= y ) ) |
| 23 |
18 21 22
|
sylanbrc |
|- ( ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) -> k e. ( dom F \ { y } ) ) |
| 24 |
23
|
adantl |
|- ( ( ( Fun F /\ y e. dom F ) /\ ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) ) -> k e. ( dom F \ { y } ) ) |
| 25 |
|
funfvima2 |
|- ( ( Fun F /\ ( dom F \ { y } ) C_ dom F ) -> ( k e. ( dom F \ { y } ) -> ( F ` k ) e. ( F " ( dom F \ { y } ) ) ) ) |
| 26 |
17 24 25
|
sylc |
|- ( ( ( Fun F /\ y e. dom F ) /\ ( k e. dom F /\ ( F ` k ) =/= ( F ` y ) ) ) -> ( F ` k ) e. ( F " ( dom F \ { y } ) ) ) |
| 27 |
26
|
expr |
|- ( ( ( Fun F /\ y e. dom F ) /\ k e. dom F ) -> ( ( F ` k ) =/= ( F ` y ) -> ( F ` k ) e. ( F " ( dom F \ { y } ) ) ) ) |
| 28 |
|
neeq1 |
|- ( ( F ` k ) = x -> ( ( F ` k ) =/= ( F ` y ) <-> x =/= ( F ` y ) ) ) |
| 29 |
|
eleq1 |
|- ( ( F ` k ) = x -> ( ( F ` k ) e. ( F " ( dom F \ { y } ) ) <-> x e. ( F " ( dom F \ { y } ) ) ) ) |
| 30 |
28 29
|
imbi12d |
|- ( ( F ` k ) = x -> ( ( ( F ` k ) =/= ( F ` y ) -> ( F ` k ) e. ( F " ( dom F \ { y } ) ) ) <-> ( x =/= ( F ` y ) -> x e. ( F " ( dom F \ { y } ) ) ) ) ) |
| 31 |
27 30
|
syl5ibcom |
|- ( ( ( Fun F /\ y e. dom F ) /\ k e. dom F ) -> ( ( F ` k ) = x -> ( x =/= ( F ` y ) -> x e. ( F " ( dom F \ { y } ) ) ) ) ) |
| 32 |
31
|
rexlimdva |
|- ( ( Fun F /\ y e. dom F ) -> ( E. k e. dom F ( F ` k ) = x -> ( x =/= ( F ` y ) -> x e. ( F " ( dom F \ { y } ) ) ) ) ) |
| 33 |
14 32
|
sylbid |
|- ( ( Fun F /\ y e. dom F ) -> ( x e. ran F -> ( x =/= ( F ` y ) -> x e. ( F " ( dom F \ { y } ) ) ) ) ) |
| 34 |
33
|
impd |
|- ( ( Fun F /\ y e. dom F ) -> ( ( x e. ran F /\ x =/= ( F ` y ) ) -> x e. ( F " ( dom F \ { y } ) ) ) ) |
| 35 |
10 34
|
biimtrid |
|- ( ( Fun F /\ y e. dom F ) -> ( x e. ( ran F \ { ( F ` y ) } ) -> x e. ( F " ( dom F \ { y } ) ) ) ) |
| 36 |
35
|
ssrdv |
|- ( ( Fun F /\ y e. dom F ) -> ( ran F \ { ( F ` y ) } ) C_ ( F " ( dom F \ { y } ) ) ) |
| 37 |
9 36
|
sylan |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ y e. dom F ) -> ( ran F \ { ( F ` y ) } ) C_ ( F " ( dom F \ { y } ) ) ) |
| 38 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 39 |
1 38
|
lspss |
|- ( ( W e. LMod /\ ( F " ( dom F \ { y } ) ) C_ ( Base ` W ) /\ ( ran F \ { ( F ` y ) } ) C_ ( F " ( dom F \ { y } ) ) ) -> ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) C_ ( ( LSpan ` W ) ` ( F " ( dom F \ { y } ) ) ) ) |
| 40 |
5 8 37 39
|
syl3anc |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ y e. dom F ) -> ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) C_ ( ( LSpan ` W ) ` ( F " ( dom F \ { y } ) ) ) ) |
| 41 |
40
|
adantrr |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) C_ ( ( LSpan ` W ) ` ( F " ( dom F \ { y } ) ) ) ) |
| 42 |
|
simplr |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> F LIndF W ) |
| 43 |
|
simprl |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> y e. dom F ) |
| 44 |
|
eldifi |
|- ( k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
| 45 |
44
|
ad2antll |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
| 46 |
|
eldifsni |
|- ( k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
| 47 |
46
|
ad2antll |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
| 48 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 49 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 50 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 51 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 52 |
48 38 49 50 51
|
lindfind |
|- ( ( ( F LIndF W /\ y e. dom F ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) ) -> -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { y } ) ) ) ) |
| 53 |
42 43 45 47 52
|
syl22anc |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { y } ) ) ) ) |
| 54 |
41 53
|
ssneldd |
|- ( ( ( W e. LMod /\ F LIndF W ) /\ ( y e. dom F /\ k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) ) -> -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) |
| 55 |
54
|
ralrimivva |
|- ( ( W e. LMod /\ F LIndF W ) -> A. y e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) |
| 56 |
9
|
funfnd |
|- ( ( W e. LMod /\ F LIndF W ) -> F Fn dom F ) |
| 57 |
|
oveq2 |
|- ( x = ( F ` y ) -> ( k ( .s ` W ) x ) = ( k ( .s ` W ) ( F ` y ) ) ) |
| 58 |
|
sneq |
|- ( x = ( F ` y ) -> { x } = { ( F ` y ) } ) |
| 59 |
58
|
difeq2d |
|- ( x = ( F ` y ) -> ( ran F \ { x } ) = ( ran F \ { ( F ` y ) } ) ) |
| 60 |
59
|
fveq2d |
|- ( x = ( F ` y ) -> ( ( LSpan ` W ) ` ( ran F \ { x } ) ) = ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) |
| 61 |
57 60
|
eleq12d |
|- ( x = ( F ` y ) -> ( ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) <-> ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) ) |
| 62 |
61
|
notbid |
|- ( x = ( F ` y ) -> ( -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) <-> -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) ) |
| 63 |
62
|
ralbidv |
|- ( x = ( F ` y ) -> ( A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) <-> A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) ) |
| 64 |
63
|
ralrn |
|- ( F Fn dom F -> ( A. x e. ran F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) <-> A. y e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) ) |
| 65 |
56 64
|
syl |
|- ( ( W e. LMod /\ F LIndF W ) -> ( A. x e. ran F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) <-> A. y e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` y ) ) e. ( ( LSpan ` W ) ` ( ran F \ { ( F ` y ) } ) ) ) ) |
| 66 |
55 65
|
mpbird |
|- ( ( W e. LMod /\ F LIndF W ) -> A. x e. ran F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) ) |
| 67 |
1 48 38 49 51 50
|
islinds2 |
|- ( W e. LMod -> ( ran F e. ( LIndS ` W ) <-> ( ran F C_ ( Base ` W ) /\ A. x e. ran F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) ) ) ) |
| 68 |
67
|
adantr |
|- ( ( W e. LMod /\ F LIndF W ) -> ( ran F e. ( LIndS ` W ) <-> ( ran F C_ ( Base ` W ) /\ A. x e. ran F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) x ) e. ( ( LSpan ` W ) ` ( ran F \ { x } ) ) ) ) ) |
| 69 |
4 66 68
|
mpbir2and |
|- ( ( W e. LMod /\ F LIndF W ) -> ran F e. ( LIndS ` W ) ) |