| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
lindff |
|
| 3 |
2
|
ancoms |
|
| 4 |
3
|
frnd |
|
| 5 |
|
simpll |
|
| 6 |
|
imassrn |
|
| 7 |
6 4
|
sstrid |
|
| 8 |
7
|
adantr |
|
| 9 |
3
|
ffund |
|
| 10 |
|
eldifsn |
|
| 11 |
|
funfn |
|
| 12 |
|
fvelrnb |
|
| 13 |
11 12
|
sylbi |
|
| 14 |
13
|
adantr |
|
| 15 |
|
difss |
|
| 16 |
15
|
jctr |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
simpl |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
necon3i |
|
| 21 |
20
|
adantl |
|
| 22 |
|
eldifsn |
|
| 23 |
18 21 22
|
sylanbrc |
|
| 24 |
23
|
adantl |
|
| 25 |
|
funfvima2 |
|
| 26 |
17 24 25
|
sylc |
|
| 27 |
26
|
expr |
|
| 28 |
|
neeq1 |
|
| 29 |
|
eleq1 |
|
| 30 |
28 29
|
imbi12d |
|
| 31 |
27 30
|
syl5ibcom |
|
| 32 |
31
|
rexlimdva |
|
| 33 |
14 32
|
sylbid |
|
| 34 |
33
|
impd |
|
| 35 |
10 34
|
biimtrid |
|
| 36 |
35
|
ssrdv |
|
| 37 |
9 36
|
sylan |
|
| 38 |
|
eqid |
|
| 39 |
1 38
|
lspss |
|
| 40 |
5 8 37 39
|
syl3anc |
|
| 41 |
40
|
adantrr |
|
| 42 |
|
simplr |
|
| 43 |
|
simprl |
|
| 44 |
|
eldifi |
|
| 45 |
44
|
ad2antll |
|
| 46 |
|
eldifsni |
|
| 47 |
46
|
ad2antll |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
48 38 49 50 51
|
lindfind |
|
| 53 |
42 43 45 47 52
|
syl22anc |
|
| 54 |
41 53
|
ssneldd |
|
| 55 |
54
|
ralrimivva |
|
| 56 |
9
|
funfnd |
|
| 57 |
|
oveq2 |
|
| 58 |
|
sneq |
|
| 59 |
58
|
difeq2d |
|
| 60 |
59
|
fveq2d |
|
| 61 |
57 60
|
eleq12d |
|
| 62 |
61
|
notbid |
|
| 63 |
62
|
ralbidv |
|
| 64 |
63
|
ralrn |
|
| 65 |
56 64
|
syl |
|
| 66 |
55 65
|
mpbird |
|
| 67 |
1 48 38 49 51 50
|
islinds2 |
|
| 68 |
67
|
adantr |
|
| 69 |
4 66 68
|
mpbir2and |
|