Metamath Proof Explorer


Theorem lindfrn

Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion lindfrn W LMod F LIndF W ran F LIndS W

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 1 lindff F LIndF W W LMod F : dom F Base W
3 2 ancoms W LMod F LIndF W F : dom F Base W
4 3 frnd W LMod F LIndF W ran F Base W
5 simpll W LMod F LIndF W y dom F W LMod
6 imassrn F dom F y ran F
7 6 4 sstrid W LMod F LIndF W F dom F y Base W
8 7 adantr W LMod F LIndF W y dom F F dom F y Base W
9 3 ffund W LMod F LIndF W Fun F
10 eldifsn x ran F F y x ran F x F y
11 funfn Fun F F Fn dom F
12 fvelrnb F Fn dom F x ran F k dom F F k = x
13 11 12 sylbi Fun F x ran F k dom F F k = x
14 13 adantr Fun F y dom F x ran F k dom F F k = x
15 difss dom F y dom F
16 15 jctr Fun F Fun F dom F y dom F
17 16 ad2antrr Fun F y dom F k dom F F k F y Fun F dom F y dom F
18 simpl k dom F F k F y k dom F
19 fveq2 k = y F k = F y
20 19 necon3i F k F y k y
21 20 adantl k dom F F k F y k y
22 eldifsn k dom F y k dom F k y
23 18 21 22 sylanbrc k dom F F k F y k dom F y
24 23 adantl Fun F y dom F k dom F F k F y k dom F y
25 funfvima2 Fun F dom F y dom F k dom F y F k F dom F y
26 17 24 25 sylc Fun F y dom F k dom F F k F y F k F dom F y
27 26 expr Fun F y dom F k dom F F k F y F k F dom F y
28 neeq1 F k = x F k F y x F y
29 eleq1 F k = x F k F dom F y x F dom F y
30 28 29 imbi12d F k = x F k F y F k F dom F y x F y x F dom F y
31 27 30 syl5ibcom Fun F y dom F k dom F F k = x x F y x F dom F y
32 31 rexlimdva Fun F y dom F k dom F F k = x x F y x F dom F y
33 14 32 sylbid Fun F y dom F x ran F x F y x F dom F y
34 33 impd Fun F y dom F x ran F x F y x F dom F y
35 10 34 syl5bi Fun F y dom F x ran F F y x F dom F y
36 35 ssrdv Fun F y dom F ran F F y F dom F y
37 9 36 sylan W LMod F LIndF W y dom F ran F F y F dom F y
38 eqid LSpan W = LSpan W
39 1 38 lspss W LMod F dom F y Base W ran F F y F dom F y LSpan W ran F F y LSpan W F dom F y
40 5 8 37 39 syl3anc W LMod F LIndF W y dom F LSpan W ran F F y LSpan W F dom F y
41 40 adantrr W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W LSpan W ran F F y LSpan W F dom F y
42 simplr W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W F LIndF W
43 simprl W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W y dom F
44 eldifi k Base Scalar W 0 Scalar W k Base Scalar W
45 44 ad2antll W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W k Base Scalar W
46 eldifsni k Base Scalar W 0 Scalar W k 0 Scalar W
47 46 ad2antll W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W k 0 Scalar W
48 eqid W = W
49 eqid Scalar W = Scalar W
50 eqid 0 Scalar W = 0 Scalar W
51 eqid Base Scalar W = Base Scalar W
52 48 38 49 50 51 lindfind F LIndF W y dom F k Base Scalar W k 0 Scalar W ¬ k W F y LSpan W F dom F y
53 42 43 45 47 52 syl22anc W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W ¬ k W F y LSpan W F dom F y
54 41 53 ssneldd W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W ¬ k W F y LSpan W ran F F y
55 54 ralrimivva W LMod F LIndF W y dom F k Base Scalar W 0 Scalar W ¬ k W F y LSpan W ran F F y
56 9 funfnd W LMod F LIndF W F Fn dom F
57 oveq2 x = F y k W x = k W F y
58 sneq x = F y x = F y
59 58 difeq2d x = F y ran F x = ran F F y
60 59 fveq2d x = F y LSpan W ran F x = LSpan W ran F F y
61 57 60 eleq12d x = F y k W x LSpan W ran F x k W F y LSpan W ran F F y
62 61 notbid x = F y ¬ k W x LSpan W ran F x ¬ k W F y LSpan W ran F F y
63 62 ralbidv x = F y k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x k Base Scalar W 0 Scalar W ¬ k W F y LSpan W ran F F y
64 63 ralrn F Fn dom F x ran F k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x y dom F k Base Scalar W 0 Scalar W ¬ k W F y LSpan W ran F F y
65 56 64 syl W LMod F LIndF W x ran F k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x y dom F k Base Scalar W 0 Scalar W ¬ k W F y LSpan W ran F F y
66 55 65 mpbird W LMod F LIndF W x ran F k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x
67 1 48 38 49 51 50 islinds2 W LMod ran F LIndS W ran F Base W x ran F k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x
68 67 adantr W LMod F LIndF W ran F LIndS W ran F Base W x ran F k Base Scalar W 0 Scalar W ¬ k W x LSpan W ran F x
69 4 66 68 mpbir2and W LMod F LIndF W ran F LIndS W