Metamath Proof Explorer


Theorem islindf3

Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypothesis islindf3.l L=ScalarW
Assertion islindf3 WLModLNzRingFLIndFWF:domF1-1VranFLIndSW

Proof

Step Hyp Ref Expression
1 islindf3.l L=ScalarW
2 eqid BaseW=BaseW
3 2 1 lindff1 WLModLNzRingFLIndFWF:domF1-1BaseW
4 3 3expa WLModLNzRingFLIndFWF:domF1-1BaseW
5 ssv BaseWV
6 f1ss F:domF1-1BaseWBaseWVF:domF1-1V
7 4 5 6 sylancl WLModLNzRingFLIndFWF:domF1-1V
8 lindfrn WLModFLIndFWranFLIndSW
9 8 adantlr WLModLNzRingFLIndFWranFLIndSW
10 7 9 jca WLModLNzRingFLIndFWF:domF1-1VranFLIndSW
11 simpll WLModLNzRingF:domF1-1VranFLIndSWWLMod
12 simprr WLModLNzRingF:domF1-1VranFLIndSWranFLIndSW
13 f1f1orn F:domF1-1VF:domF1-1 ontoranF
14 f1of1 F:domF1-1 ontoranFF:domF1-1ranF
15 13 14 syl F:domF1-1VF:domF1-1ranF
16 15 ad2antrl WLModLNzRingF:domF1-1VranFLIndSWF:domF1-1ranF
17 f1linds WLModranFLIndSWF:domF1-1ranFFLIndFW
18 11 12 16 17 syl3anc WLModLNzRingF:domF1-1VranFLIndSWFLIndFW
19 10 18 impbida WLModLNzRingFLIndFWF:domF1-1VranFLIndSW