Metamath Proof Explorer


Theorem islindf3

Description: In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypothesis islindf3.l L = Scalar W
Assertion islindf3 W LMod L NzRing F LIndF W F : dom F 1-1 V ran F LIndS W

Proof

Step Hyp Ref Expression
1 islindf3.l L = Scalar W
2 eqid Base W = Base W
3 2 1 lindff1 W LMod L NzRing F LIndF W F : dom F 1-1 Base W
4 3 3expa W LMod L NzRing F LIndF W F : dom F 1-1 Base W
5 ssv Base W V
6 f1ss F : dom F 1-1 Base W Base W V F : dom F 1-1 V
7 4 5 6 sylancl W LMod L NzRing F LIndF W F : dom F 1-1 V
8 lindfrn W LMod F LIndF W ran F LIndS W
9 8 adantlr W LMod L NzRing F LIndF W ran F LIndS W
10 7 9 jca W LMod L NzRing F LIndF W F : dom F 1-1 V ran F LIndS W
11 simpll W LMod L NzRing F : dom F 1-1 V ran F LIndS W W LMod
12 simprr W LMod L NzRing F : dom F 1-1 V ran F LIndS W ran F LIndS W
13 f1f1orn F : dom F 1-1 V F : dom F 1-1 onto ran F
14 f1of1 F : dom F 1-1 onto ran F F : dom F 1-1 ran F
15 13 14 syl F : dom F 1-1 V F : dom F 1-1 ran F
16 15 ad2antrl W LMod L NzRing F : dom F 1-1 V ran F LIndS W F : dom F 1-1 ran F
17 f1linds W LMod ran F LIndS W F : dom F 1-1 ran F F LIndF W
18 11 12 16 17 syl3anc W LMod L NzRing F : dom F 1-1 V ran F LIndS W F LIndF W
19 10 18 impbida W LMod L NzRing F LIndF W F : dom F 1-1 V ran F LIndS W