Metamath Proof Explorer


Theorem f1linds

Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Assertion f1linds WLModSLIndSWF:D1-1SFLIndFW

Proof

Step Hyp Ref Expression
1 f1f F:D1-1SF:DS
2 fcoi2 F:DSISF=F
3 1 2 syl F:D1-1SISF=F
4 3 3ad2ant3 WLModSLIndSWF:D1-1SISF=F
5 simp1 WLModSLIndSWF:D1-1SWLMod
6 linds2 SLIndSWISLIndFW
7 6 3ad2ant2 WLModSLIndSWF:D1-1SISLIndFW
8 dmresi domIS=S
9 f1eq3 domIS=SF:D1-1domISF:D1-1S
10 8 9 ax-mp F:D1-1domISF:D1-1S
11 10 biimpri F:D1-1SF:D1-1domIS
12 11 3ad2ant3 WLModSLIndSWF:D1-1SF:D1-1domIS
13 f1lindf WLModISLIndFWF:D1-1domISISFLIndFW
14 5 7 12 13 syl3anc WLModSLIndSWF:D1-1SISFLIndFW
15 4 14 eqbrtrrd WLModSLIndSWF:D1-1SFLIndFW