Metamath Proof Explorer


Theorem f1linds

Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Assertion f1linds W LMod S LIndS W F : D 1-1 S F LIndF W

Proof

Step Hyp Ref Expression
1 f1f F : D 1-1 S F : D S
2 fcoi2 F : D S I S F = F
3 1 2 syl F : D 1-1 S I S F = F
4 3 3ad2ant3 W LMod S LIndS W F : D 1-1 S I S F = F
5 simp1 W LMod S LIndS W F : D 1-1 S W LMod
6 linds2 S LIndS W I S LIndF W
7 6 3ad2ant2 W LMod S LIndS W F : D 1-1 S I S LIndF W
8 dmresi dom I S = S
9 f1eq3 dom I S = S F : D 1-1 dom I S F : D 1-1 S
10 8 9 ax-mp F : D 1-1 dom I S F : D 1-1 S
11 10 biimpri F : D 1-1 S F : D 1-1 dom I S
12 11 3ad2ant3 W LMod S LIndS W F : D 1-1 S F : D 1-1 dom I S
13 f1lindf W LMod I S LIndF W F : D 1-1 dom I S I S F LIndF W
14 5 7 12 13 syl3anc W LMod S LIndS W F : D 1-1 S I S F LIndF W
15 4 14 eqbrtrrd W LMod S LIndS W F : D 1-1 S F LIndF W