| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindfmm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
lindfmm.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 3 |
|
rellindf |
⊢ Rel LIndF |
| 4 |
3
|
brrelex1i |
⊢ ( 𝐹 LIndF 𝑆 → 𝐹 ∈ V ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 6 |
|
dmfex |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐼 ∈ V ) |
| 7 |
4 5 6
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝐹 LIndF 𝑆 ) → 𝐼 ∈ V ) |
| 8 |
7
|
ex |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 → 𝐼 ∈ V ) ) |
| 9 |
3
|
brrelex1i |
⊢ ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 10 |
|
f1f |
⊢ ( 𝐺 : 𝐵 –1-1→ 𝐶 → 𝐺 : 𝐵 ⟶ 𝐶 ) |
| 11 |
|
fco |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
| 12 |
10 11
|
sylan |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
| 14 |
|
dmfex |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) → 𝐼 ∈ V ) |
| 15 |
9 13 14
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) → 𝐼 ∈ V ) |
| 16 |
15
|
ex |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 → 𝐼 ∈ V ) ) |
| 17 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝐺 : 𝐵 –1-1→ 𝐶 ) |
| 19 |
|
lmhmlmod1 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝑆 ∈ LMod ) |
| 21 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| 23 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → 𝑥 ∈ 𝐼 ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 26 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
| 27 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
| 29 |
1 26 27 28
|
lmodvscl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 30 |
20 21 25 29
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 31 |
|
imassrn |
⊢ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝐹 |
| 32 |
|
frn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) → ran 𝐹 ⊆ 𝐵 ) |
| 34 |
31 33
|
sstrid |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) → ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) |
| 36 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
| 37 |
1 36
|
lspssv |
⊢ ( ( 𝑆 ∈ LMod ∧ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) |
| 38 |
20 35 37
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) |
| 39 |
|
f1elima |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ∧ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 40 |
18 30 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 41 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 42 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
| 43 |
26 28 1 27 42
|
lmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 44 |
41 21 25 43
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 45 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → 𝐹 Fn 𝐼 ) |
| 46 |
45
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐹 Fn 𝐼 ) |
| 47 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 48 |
46 23 47
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 50 |
44 49
|
eqtr4d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 51 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
| 52 |
1 36 51
|
lmhmlsp |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 53 |
41 35 52
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 54 |
|
imaco |
⊢ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 55 |
54
|
fveq2i |
⊢ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 56 |
53 55
|
eqtr4di |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 57 |
50 56
|
eleq12d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 58 |
40 57
|
bitr3d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 59 |
58
|
notbid |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 60 |
59
|
anassrs |
⊢ ( ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 61 |
17 60
|
sylan2 |
⊢ ( ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 62 |
61
|
ralbidva |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 63 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 64 |
26 63
|
lmhmsca |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 65 |
64
|
fveq2d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 66 |
64
|
fveq2d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 67 |
66
|
sneqd |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } = { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) |
| 68 |
65 67
|
difeq12d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) |
| 69 |
68
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) |
| 70 |
69
|
raleqdv |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 71 |
62 70
|
bitr4d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 72 |
71
|
ralbidva |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 73 |
19
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝑆 ∈ LMod ) |
| 74 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐼 ∈ V ) |
| 75 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑆 ) ) = ( 0g ‘ ( Scalar ‘ 𝑆 ) ) |
| 76 |
1 27 36 26 28 75
|
islindf2 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 77 |
73 74 22 76
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐹 LIndF 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 78 |
|
lmhmlmod2 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 79 |
78
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝑇 ∈ LMod ) |
| 80 |
12
|
ad2ant2lr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
| 81 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
| 82 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) |
| 83 |
2 42 51 63 81 82
|
islindf2 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 84 |
79 74 80 83
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 85 |
72 77 84
|
3bitr4d |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) |
| 86 |
85
|
exp32 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) → ( 𝐹 : 𝐼 ⟶ 𝐵 → ( 𝐼 ∈ V → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) ) ) |
| 87 |
86
|
3impia |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐼 ∈ V → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) ) |
| 88 |
8 16 87
|
pm5.21ndd |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) |