Step |
Hyp |
Ref |
Expression |
1 |
|
lindfmm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
lindfmm.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
3 |
|
rellindf |
⊢ Rel LIndF |
4 |
3
|
brrelex1i |
⊢ ( 𝐹 LIndF 𝑆 → 𝐹 ∈ V ) |
5 |
|
simp3 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
6 |
|
dmfex |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → 𝐼 ∈ V ) |
7 |
4 5 6
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ 𝐹 LIndF 𝑆 ) → 𝐼 ∈ V ) |
8 |
7
|
ex |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 → 𝐼 ∈ V ) ) |
9 |
3
|
brrelex1i |
⊢ ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
10 |
|
f1f |
⊢ ( 𝐺 : 𝐵 –1-1→ 𝐶 → 𝐺 : 𝐵 ⟶ 𝐶 ) |
11 |
|
fco |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
14 |
|
dmfex |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) → 𝐼 ∈ V ) |
15 |
9 13 14
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) → 𝐼 ∈ V ) |
16 |
15
|
ex |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 → 𝐼 ∈ V ) ) |
17 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
18 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝐺 : 𝐵 –1-1→ 𝐶 ) |
19 |
|
lmhmlmod1 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝑆 ∈ LMod ) |
21 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐹 : 𝐼 ⟶ 𝐵 ) |
23 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → 𝑥 ∈ 𝐼 ) |
24 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
27 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
29 |
1 26 27 28
|
lmodvscl |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
30 |
20 21 25 29
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
31 |
|
imassrn |
⊢ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝐹 |
32 |
|
frn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) → ran 𝐹 ⊆ 𝐵 ) |
34 |
31 33
|
sstrid |
⊢ ( ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) → ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) |
36 |
|
eqid |
⊢ ( LSpan ‘ 𝑆 ) = ( LSpan ‘ 𝑆 ) |
37 |
1 36
|
lspssv |
⊢ ( ( 𝑆 ∈ LMod ∧ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) → ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) |
38 |
20 35 37
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) |
39 |
|
f1elima |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ∧ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ⊆ 𝐵 ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
40 |
18 30 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
41 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) |
42 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
43 |
26 28 1 27 42
|
lmhmlin |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
44 |
41 21 25 43
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
45 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → 𝐹 Fn 𝐼 ) |
46 |
45
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐹 Fn 𝐼 ) |
47 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
48 |
46 23 47
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
49 |
48
|
oveq2d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
50 |
44 49
|
eqtr4d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
51 |
|
eqid |
⊢ ( LSpan ‘ 𝑇 ) = ( LSpan ‘ 𝑇 ) |
52 |
1 36 51
|
lmhmlsp |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝐵 ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
53 |
41 35 52
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
54 |
|
imaco |
⊢ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) = ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
55 |
54
|
fveq2i |
⊢ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( 𝐺 “ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
56 |
53 55
|
eqtr4di |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
57 |
50 56
|
eleq12d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝐺 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( 𝐺 “ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
58 |
40 57
|
bitr3d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
59 |
58
|
notbid |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
60 |
59
|
anassrs |
⊢ ( ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
61 |
17 60
|
sylan2 |
⊢ ( ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
62 |
61
|
ralbidva |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
63 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
64 |
26 63
|
lmhmsca |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
66 |
64
|
fveq2d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑆 ) ) ) |
67 |
66
|
sneqd |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } = { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) |
68 |
65 67
|
difeq12d |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) |
69 |
68
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) = ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ) |
70 |
69
|
raleqdv |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
71 |
62 70
|
bitr4d |
⊢ ( ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
72 |
71
|
ralbidva |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
73 |
19
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝑆 ∈ LMod ) |
74 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝐼 ∈ V ) |
75 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑆 ) ) = ( 0g ‘ ( Scalar ‘ 𝑆 ) ) |
76 |
1 27 36 26 28 75
|
islindf2 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
77 |
73 74 22 76
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐹 LIndF 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑆 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑆 ) ‘ ( 𝐹 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
78 |
|
lmhmlmod2 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → 𝑇 ∈ LMod ) |
80 |
12
|
ad2ant2lr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) |
81 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
82 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑇 ) ) = ( 0g ‘ ( Scalar ‘ 𝑇 ) ) |
83 |
2 42 51 63 81 82
|
islindf2 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ ( 𝐺 ∘ 𝐹 ) : 𝐼 ⟶ 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
84 |
79 74 80 83
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑇 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ( ( LSpan ‘ 𝑇 ) ‘ ( ( 𝐺 ∘ 𝐹 ) “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
85 |
72 77 84
|
3bitr4d |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) ∧ ( 𝐹 : 𝐼 ⟶ 𝐵 ∧ 𝐼 ∈ V ) ) → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) |
86 |
85
|
exp32 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ) → ( 𝐹 : 𝐼 ⟶ 𝐵 → ( 𝐼 ∈ V → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) ) ) |
87 |
86
|
3impia |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐼 ∈ V → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) ) |
88 |
8 16 87
|
pm5.21ndd |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑆 ↔ ( 𝐺 ∘ 𝐹 ) LIndF 𝑇 ) ) |