| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindfmm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
lindfmm.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 3 |
|
ibar |
⊢ ( 𝐹 ⊆ 𝐵 → ( ( I ↾ 𝐹 ) LIndF 𝑆 ↔ ( 𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹 ) LIndF 𝑆 ) ) ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( ( I ↾ 𝐹 ) LIndF 𝑆 ↔ ( 𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹 ) LIndF 𝑆 ) ) ) |
| 5 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
| 6 |
|
f1of |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
| 7 |
5 6
|
ax-mp |
⊢ ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 |
| 8 |
|
simp3 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → 𝐹 ⊆ 𝐵 ) |
| 9 |
|
fss |
⊢ ( ( ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ∧ 𝐹 ⊆ 𝐵 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
| 10 |
7 8 9
|
sylancr |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) |
| 11 |
1 2
|
lindfmm |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐵 ) → ( ( I ↾ 𝐹 ) LIndF 𝑆 ↔ ( 𝐺 ∘ ( I ↾ 𝐹 ) ) LIndF 𝑇 ) ) |
| 12 |
10 11
|
syld3an3 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( ( I ↾ 𝐹 ) LIndF 𝑆 ↔ ( 𝐺 ∘ ( I ↾ 𝐹 ) ) LIndF 𝑇 ) ) |
| 13 |
4 12
|
bitr3d |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( ( 𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹 ) LIndF 𝑆 ) ↔ ( 𝐺 ∘ ( I ↾ 𝐹 ) ) LIndF 𝑇 ) ) |
| 14 |
|
lmhmlmod1 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → 𝑆 ∈ LMod ) |
| 16 |
1
|
islinds |
⊢ ( 𝑆 ∈ LMod → ( 𝐹 ∈ ( LIndS ‘ 𝑆 ) ↔ ( 𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹 ) LIndF 𝑆 ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐹 ∈ ( LIndS ‘ 𝑆 ) ↔ ( 𝐹 ⊆ 𝐵 ∧ ( I ↾ 𝐹 ) LIndF 𝑆 ) ) ) |
| 18 |
|
lmhmlmod2 |
⊢ ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → 𝑇 ∈ LMod ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) → 𝑇 ∈ LMod ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) → ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 22 |
|
f1ores |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1-onto→ ( 𝐺 “ 𝐹 ) ) |
| 23 |
|
f1of1 |
⊢ ( ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1-onto→ ( 𝐺 “ 𝐹 ) → ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1→ ( 𝐺 “ 𝐹 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1→ ( 𝐺 “ 𝐹 ) ) |
| 25 |
24
|
3adant1 |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1→ ( 𝐺 “ 𝐹 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) → ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1→ ( 𝐺 “ 𝐹 ) ) |
| 27 |
|
f1linds |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ∧ ( 𝐺 ↾ 𝐹 ) : 𝐹 –1-1→ ( 𝐺 “ 𝐹 ) ) → ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) |
| 28 |
20 21 26 27
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) → ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) |
| 29 |
|
df-ima |
⊢ ( 𝐺 “ 𝐹 ) = ran ( 𝐺 ↾ 𝐹 ) |
| 30 |
|
lindfrn |
⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) → ran ( 𝐺 ↾ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 31 |
19 30
|
sylan |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) → ran ( 𝐺 ↾ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 32 |
29 31
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) ∧ ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) → ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) |
| 33 |
28 32
|
impbida |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ↔ ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) ) |
| 34 |
|
coires1 |
⊢ ( 𝐺 ∘ ( I ↾ 𝐹 ) ) = ( 𝐺 ↾ 𝐹 ) |
| 35 |
34
|
breq1i |
⊢ ( ( 𝐺 ∘ ( I ↾ 𝐹 ) ) LIndF 𝑇 ↔ ( 𝐺 ↾ 𝐹 ) LIndF 𝑇 ) |
| 36 |
33 35
|
bitr4di |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ↔ ( 𝐺 ∘ ( I ↾ 𝐹 ) ) LIndF 𝑇 ) ) |
| 37 |
13 17 36
|
3bitr4d |
⊢ ( ( 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐹 ∈ ( LIndS ‘ 𝑆 ) ↔ ( 𝐺 “ 𝐹 ) ∈ ( LIndS ‘ 𝑇 ) ) ) |