Metamath Proof Explorer


Theorem lindfind2

Description: In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind2.k K = LSpan W
lindfind2.l L = Scalar W
Assertion lindfind2 W LMod L NzRing F LIndF W E dom F ¬ F E K F dom F E

Proof

Step Hyp Ref Expression
1 lindfind2.k K = LSpan W
2 lindfind2.l L = Scalar W
3 simp1l W LMod L NzRing F LIndF W E dom F W LMod
4 simp2 W LMod L NzRing F LIndF W E dom F F LIndF W
5 eqid Base W = Base W
6 5 lindff F LIndF W W LMod F : dom F Base W
7 4 3 6 syl2anc W LMod L NzRing F LIndF W E dom F F : dom F Base W
8 simp3 W LMod L NzRing F LIndF W E dom F E dom F
9 7 8 ffvelrnd W LMod L NzRing F LIndF W E dom F F E Base W
10 eqid W = W
11 eqid 1 L = 1 L
12 5 2 10 11 lmodvs1 W LMod F E Base W 1 L W F E = F E
13 3 9 12 syl2anc W LMod L NzRing F LIndF W E dom F 1 L W F E = F E
14 nzrring L NzRing L Ring
15 eqid Base L = Base L
16 15 11 ringidcl L Ring 1 L Base L
17 14 16 syl L NzRing 1 L Base L
18 17 adantl W LMod L NzRing 1 L Base L
19 18 3ad2ant1 W LMod L NzRing F LIndF W E dom F 1 L Base L
20 eqid 0 L = 0 L
21 11 20 nzrnz L NzRing 1 L 0 L
22 21 adantl W LMod L NzRing 1 L 0 L
23 22 3ad2ant1 W LMod L NzRing F LIndF W E dom F 1 L 0 L
24 10 1 2 20 15 lindfind F LIndF W E dom F 1 L Base L 1 L 0 L ¬ 1 L W F E K F dom F E
25 4 8 19 23 24 syl22anc W LMod L NzRing F LIndF W E dom F ¬ 1 L W F E K F dom F E
26 13 25 eqneltrrd W LMod L NzRing F LIndF W E dom F ¬ F E K F dom F E