Step |
Hyp |
Ref |
Expression |
1 |
|
lindfind2.k |
|- K = ( LSpan ` W ) |
2 |
|
lindfind2.l |
|- L = ( Scalar ` W ) |
3 |
|
simp1l |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> W e. LMod ) |
4 |
|
simp2 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> F LIndF W ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
5
|
lindff |
|- ( ( F LIndF W /\ W e. LMod ) -> F : dom F --> ( Base ` W ) ) |
7 |
4 3 6
|
syl2anc |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> F : dom F --> ( Base ` W ) ) |
8 |
|
simp3 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> E e. dom F ) |
9 |
7 8
|
ffvelrnd |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> ( F ` E ) e. ( Base ` W ) ) |
10 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
11 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
12 |
5 2 10 11
|
lmodvs1 |
|- ( ( W e. LMod /\ ( F ` E ) e. ( Base ` W ) ) -> ( ( 1r ` L ) ( .s ` W ) ( F ` E ) ) = ( F ` E ) ) |
13 |
3 9 12
|
syl2anc |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> ( ( 1r ` L ) ( .s ` W ) ( F ` E ) ) = ( F ` E ) ) |
14 |
|
nzrring |
|- ( L e. NzRing -> L e. Ring ) |
15 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
16 |
15 11
|
ringidcl |
|- ( L e. Ring -> ( 1r ` L ) e. ( Base ` L ) ) |
17 |
14 16
|
syl |
|- ( L e. NzRing -> ( 1r ` L ) e. ( Base ` L ) ) |
18 |
17
|
adantl |
|- ( ( W e. LMod /\ L e. NzRing ) -> ( 1r ` L ) e. ( Base ` L ) ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> ( 1r ` L ) e. ( Base ` L ) ) |
20 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
21 |
11 20
|
nzrnz |
|- ( L e. NzRing -> ( 1r ` L ) =/= ( 0g ` L ) ) |
22 |
21
|
adantl |
|- ( ( W e. LMod /\ L e. NzRing ) -> ( 1r ` L ) =/= ( 0g ` L ) ) |
23 |
22
|
3ad2ant1 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> ( 1r ` L ) =/= ( 0g ` L ) ) |
24 |
10 1 2 20 15
|
lindfind |
|- ( ( ( F LIndF W /\ E e. dom F ) /\ ( ( 1r ` L ) e. ( Base ` L ) /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) -> -. ( ( 1r ` L ) ( .s ` W ) ( F ` E ) ) e. ( K ` ( F " ( dom F \ { E } ) ) ) ) |
25 |
4 8 19 23 24
|
syl22anc |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> -. ( ( 1r ` L ) ( .s ` W ) ( F ` E ) ) e. ( K ` ( F " ( dom F \ { E } ) ) ) ) |
26 |
13 25
|
eqneltrrd |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F LIndF W /\ E e. dom F ) -> -. ( F ` E ) e. ( K ` ( F " ( dom F \ { E } ) ) ) ) |