| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindfind2.k |
|- K = ( LSpan ` W ) |
| 2 |
|
lindfind2.l |
|- L = ( Scalar ` W ) |
| 3 |
|
simp1 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> ( W e. LMod /\ L e. NzRing ) ) |
| 4 |
|
linds2 |
|- ( F e. ( LIndS ` W ) -> ( _I |` F ) LIndF W ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> ( _I |` F ) LIndF W ) |
| 6 |
|
dmresi |
|- dom ( _I |` F ) = F |
| 7 |
6
|
eleq2i |
|- ( E e. dom ( _I |` F ) <-> E e. F ) |
| 8 |
7
|
biimpri |
|- ( E e. F -> E e. dom ( _I |` F ) ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> E e. dom ( _I |` F ) ) |
| 10 |
1 2
|
lindfind2 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ ( _I |` F ) LIndF W /\ E e. dom ( _I |` F ) ) -> -. ( ( _I |` F ) ` E ) e. ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) ) |
| 11 |
3 5 9 10
|
syl3anc |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> -. ( ( _I |` F ) ` E ) e. ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) ) |
| 12 |
|
fvresi |
|- ( E e. F -> ( ( _I |` F ) ` E ) = E ) |
| 13 |
6
|
difeq1i |
|- ( dom ( _I |` F ) \ { E } ) = ( F \ { E } ) |
| 14 |
13
|
imaeq2i |
|- ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) = ( ( _I |` F ) " ( F \ { E } ) ) |
| 15 |
|
difss |
|- ( F \ { E } ) C_ F |
| 16 |
|
resiima |
|- ( ( F \ { E } ) C_ F -> ( ( _I |` F ) " ( F \ { E } ) ) = ( F \ { E } ) ) |
| 17 |
15 16
|
ax-mp |
|- ( ( _I |` F ) " ( F \ { E } ) ) = ( F \ { E } ) |
| 18 |
14 17
|
eqtri |
|- ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) = ( F \ { E } ) |
| 19 |
18
|
fveq2i |
|- ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) = ( K ` ( F \ { E } ) ) |
| 20 |
19
|
a1i |
|- ( E e. F -> ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) = ( K ` ( F \ { E } ) ) ) |
| 21 |
12 20
|
eleq12d |
|- ( E e. F -> ( ( ( _I |` F ) ` E ) e. ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) <-> E e. ( K ` ( F \ { E } ) ) ) ) |
| 22 |
21
|
3ad2ant3 |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> ( ( ( _I |` F ) ` E ) e. ( K ` ( ( _I |` F ) " ( dom ( _I |` F ) \ { E } ) ) ) <-> E e. ( K ` ( F \ { E } ) ) ) ) |
| 23 |
11 22
|
mtbid |
|- ( ( ( W e. LMod /\ L e. NzRing ) /\ F e. ( LIndS ` W ) /\ E e. F ) -> -. E e. ( K ` ( F \ { E } ) ) ) |