Metamath Proof Explorer


Theorem lsslindf

Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses lsslindf.u U = LSubSp W
lsslindf.x X = W 𝑠 S
Assertion lsslindf W LMod S U ran F S F LIndF X F LIndF W

Proof

Step Hyp Ref Expression
1 lsslindf.u U = LSubSp W
2 lsslindf.x X = W 𝑠 S
3 rellindf Rel LIndF
4 3 brrelex1i F LIndF X F V
5 4 a1i W LMod S U ran F S F LIndF X F V
6 3 brrelex1i F LIndF W F V
7 6 a1i W LMod S U ran F S F LIndF W F V
8 simpr W LMod S U ran F S F : dom F Base X F : dom F Base X
9 eqid Base W = Base W
10 2 9 ressbasss Base X Base W
11 fss F : dom F Base X Base X Base W F : dom F Base W
12 8 10 11 sylancl W LMod S U ran F S F : dom F Base X F : dom F Base W
13 ffn F : dom F Base W F Fn dom F
14 13 adantl W LMod S U ran F S F : dom F Base W F Fn dom F
15 simp3 W LMod S U ran F S ran F S
16 9 1 lssss S U S Base W
17 16 3ad2ant2 W LMod S U ran F S S Base W
18 2 9 ressbas2 S Base W S = Base X
19 17 18 syl W LMod S U ran F S S = Base X
20 15 19 sseqtrd W LMod S U ran F S ran F Base X
21 20 adantr W LMod S U ran F S F : dom F Base W ran F Base X
22 df-f F : dom F Base X F Fn dom F ran F Base X
23 14 21 22 sylanbrc W LMod S U ran F S F : dom F Base W F : dom F Base X
24 12 23 impbida W LMod S U ran F S F : dom F Base X F : dom F Base W
25 24 adantr W LMod S U ran F S F V F : dom F Base X F : dom F Base W
26 simpl2 W LMod S U ran F S F V S U
27 eqid Scalar W = Scalar W
28 2 27 resssca S U Scalar W = Scalar X
29 28 eqcomd S U Scalar X = Scalar W
30 26 29 syl W LMod S U ran F S F V Scalar X = Scalar W
31 30 fveq2d W LMod S U ran F S F V Base Scalar X = Base Scalar W
32 30 fveq2d W LMod S U ran F S F V 0 Scalar X = 0 Scalar W
33 32 sneqd W LMod S U ran F S F V 0 Scalar X = 0 Scalar W
34 31 33 difeq12d W LMod S U ran F S F V Base Scalar X 0 Scalar X = Base Scalar W 0 Scalar W
35 eqid W = W
36 2 35 ressvsca S U W = X
37 36 eqcomd S U X = W
38 26 37 syl W LMod S U ran F S F V X = W
39 38 oveqd W LMod S U ran F S F V k X F x = k W F x
40 simpl1 W LMod S U ran F S F V W LMod
41 imassrn F dom F x ran F
42 simpl3 W LMod S U ran F S F V ran F S
43 41 42 sstrid W LMod S U ran F S F V F dom F x S
44 eqid LSpan W = LSpan W
45 eqid LSpan X = LSpan X
46 2 44 45 1 lsslsp W LMod S U F dom F x S LSpan W F dom F x = LSpan X F dom F x
47 40 26 43 46 syl3anc W LMod S U ran F S F V LSpan W F dom F x = LSpan X F dom F x
48 47 eqcomd W LMod S U ran F S F V LSpan X F dom F x = LSpan W F dom F x
49 39 48 eleq12d W LMod S U ran F S F V k X F x LSpan X F dom F x k W F x LSpan W F dom F x
50 49 notbid W LMod S U ran F S F V ¬ k X F x LSpan X F dom F x ¬ k W F x LSpan W F dom F x
51 34 50 raleqbidv W LMod S U ran F S F V k Base Scalar X 0 Scalar X ¬ k X F x LSpan X F dom F x k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
52 51 ralbidv W LMod S U ran F S F V x dom F k Base Scalar X 0 Scalar X ¬ k X F x LSpan X F dom F x x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
53 25 52 anbi12d W LMod S U ran F S F V F : dom F Base X x dom F k Base Scalar X 0 Scalar X ¬ k X F x LSpan X F dom F x F : dom F Base W x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
54 2 ovexi X V
55 54 a1i W LMod S U ran F S X V
56 eqid Base X = Base X
57 eqid X = X
58 eqid Scalar X = Scalar X
59 eqid Base Scalar X = Base Scalar X
60 eqid 0 Scalar X = 0 Scalar X
61 56 57 45 58 59 60 islindf X V F V F LIndF X F : dom F Base X x dom F k Base Scalar X 0 Scalar X ¬ k X F x LSpan X F dom F x
62 55 61 sylan W LMod S U ran F S F V F LIndF X F : dom F Base X x dom F k Base Scalar X 0 Scalar X ¬ k X F x LSpan X F dom F x
63 eqid Base Scalar W = Base Scalar W
64 eqid 0 Scalar W = 0 Scalar W
65 9 35 44 27 63 64 islindf W LMod F V F LIndF W F : dom F Base W x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
66 65 3ad2antl1 W LMod S U ran F S F V F LIndF W F : dom F Base W x dom F k Base Scalar W 0 Scalar W ¬ k W F x LSpan W F dom F x
67 53 62 66 3bitr4d W LMod S U ran F S F V F LIndF X F LIndF W
68 67 ex W LMod S U ran F S F V F LIndF X F LIndF W
69 5 7 68 pm5.21ndd W LMod S U ran F S F LIndF X F LIndF W