Step |
Hyp |
Ref |
Expression |
1 |
|
lsslindf.u |
|
2 |
|
lsslindf.x |
|
3 |
|
rellindf |
|
4 |
3
|
brrelex1i |
|
5 |
4
|
a1i |
|
6 |
3
|
brrelex1i |
|
7 |
6
|
a1i |
|
8 |
|
simpr |
|
9 |
|
eqid |
|
10 |
2 9
|
ressbasss |
|
11 |
|
fss |
|
12 |
8 10 11
|
sylancl |
|
13 |
|
ffn |
|
14 |
13
|
adantl |
|
15 |
|
simp3 |
|
16 |
9 1
|
lssss |
|
17 |
16
|
3ad2ant2 |
|
18 |
2 9
|
ressbas2 |
|
19 |
17 18
|
syl |
|
20 |
15 19
|
sseqtrd |
|
21 |
20
|
adantr |
|
22 |
|
df-f |
|
23 |
14 21 22
|
sylanbrc |
|
24 |
12 23
|
impbida |
|
25 |
24
|
adantr |
|
26 |
|
simpl2 |
|
27 |
|
eqid |
|
28 |
2 27
|
resssca |
|
29 |
28
|
eqcomd |
|
30 |
26 29
|
syl |
|
31 |
30
|
fveq2d |
|
32 |
30
|
fveq2d |
|
33 |
32
|
sneqd |
|
34 |
31 33
|
difeq12d |
|
35 |
|
eqid |
|
36 |
2 35
|
ressvsca |
|
37 |
36
|
eqcomd |
|
38 |
26 37
|
syl |
|
39 |
38
|
oveqd |
|
40 |
|
simpl1 |
|
41 |
|
imassrn |
|
42 |
|
simpl3 |
|
43 |
41 42
|
sstrid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
2 44 45 1
|
lsslsp |
|
47 |
40 26 43 46
|
syl3anc |
|
48 |
47
|
eqcomd |
|
49 |
39 48
|
eleq12d |
|
50 |
49
|
notbid |
|
51 |
34 50
|
raleqbidv |
|
52 |
51
|
ralbidv |
|
53 |
25 52
|
anbi12d |
|
54 |
2
|
ovexi |
|
55 |
54
|
a1i |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
56 57 45 58 59 60
|
islindf |
|
62 |
55 61
|
sylan |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
9 35 44 27 63 64
|
islindf |
|
66 |
65
|
3ad2antl1 |
|
67 |
53 62 66
|
3bitr4d |
|
68 |
67
|
ex |
|
69 |
5 7 68
|
pm5.21ndd |
|