| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsslindf.u |
|
| 2 |
|
lsslindf.x |
|
| 3 |
|
rellindf |
|
| 4 |
3
|
brrelex1i |
|
| 5 |
4
|
a1i |
|
| 6 |
3
|
brrelex1i |
|
| 7 |
6
|
a1i |
|
| 8 |
|
simpr |
|
| 9 |
|
eqid |
|
| 10 |
2 9
|
ressbasss |
|
| 11 |
|
fss |
|
| 12 |
8 10 11
|
sylancl |
|
| 13 |
|
ffn |
|
| 14 |
13
|
adantl |
|
| 15 |
|
simp3 |
|
| 16 |
9 1
|
lssss |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
2 9
|
ressbas2 |
|
| 19 |
17 18
|
syl |
|
| 20 |
15 19
|
sseqtrd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
df-f |
|
| 23 |
14 21 22
|
sylanbrc |
|
| 24 |
12 23
|
impbida |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simpl2 |
|
| 27 |
|
eqid |
|
| 28 |
2 27
|
resssca |
|
| 29 |
28
|
eqcomd |
|
| 30 |
26 29
|
syl |
|
| 31 |
30
|
fveq2d |
|
| 32 |
30
|
fveq2d |
|
| 33 |
32
|
sneqd |
|
| 34 |
31 33
|
difeq12d |
|
| 35 |
|
eqid |
|
| 36 |
2 35
|
ressvsca |
|
| 37 |
36
|
eqcomd |
|
| 38 |
26 37
|
syl |
|
| 39 |
38
|
oveqd |
|
| 40 |
|
simpl1 |
|
| 41 |
|
imassrn |
|
| 42 |
|
simpl3 |
|
| 43 |
41 42
|
sstrid |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
2 44 45 1
|
lsslsp |
|
| 47 |
40 26 43 46
|
syl3anc |
|
| 48 |
39 47
|
eleq12d |
|
| 49 |
48
|
notbid |
|
| 50 |
34 49
|
raleqbidv |
|
| 51 |
50
|
ralbidv |
|
| 52 |
25 51
|
anbi12d |
|
| 53 |
2
|
ovexi |
|
| 54 |
53
|
a1i |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
|
eqid |
|
| 60 |
55 56 45 57 58 59
|
islindf |
|
| 61 |
54 60
|
sylan |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
9 35 44 27 62 63
|
islindf |
|
| 65 |
64
|
3ad2antl1 |
|
| 66 |
52 61 65
|
3bitr4d |
|
| 67 |
66
|
ex |
|
| 68 |
5 7 67
|
pm5.21ndd |
|