Step |
Hyp |
Ref |
Expression |
1 |
|
lsslindf.u |
|- U = ( LSubSp ` W ) |
2 |
|
lsslindf.x |
|- X = ( W |`s S ) |
3 |
|
rellindf |
|- Rel LIndF |
4 |
3
|
brrelex1i |
|- ( F LIndF X -> F e. _V ) |
5 |
4
|
a1i |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ( F LIndF X -> F e. _V ) ) |
6 |
3
|
brrelex1i |
|- ( F LIndF W -> F e. _V ) |
7 |
6
|
a1i |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ( F LIndF W -> F e. _V ) ) |
8 |
|
simpr |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F : dom F --> ( Base ` X ) ) -> F : dom F --> ( Base ` X ) ) |
9 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
10 |
2 9
|
ressbasss |
|- ( Base ` X ) C_ ( Base ` W ) |
11 |
|
fss |
|- ( ( F : dom F --> ( Base ` X ) /\ ( Base ` X ) C_ ( Base ` W ) ) -> F : dom F --> ( Base ` W ) ) |
12 |
8 10 11
|
sylancl |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F : dom F --> ( Base ` X ) ) -> F : dom F --> ( Base ` W ) ) |
13 |
|
ffn |
|- ( F : dom F --> ( Base ` W ) -> F Fn dom F ) |
14 |
13
|
adantl |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F : dom F --> ( Base ` W ) ) -> F Fn dom F ) |
15 |
|
simp3 |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ran F C_ S ) |
16 |
9 1
|
lssss |
|- ( S e. U -> S C_ ( Base ` W ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> S C_ ( Base ` W ) ) |
18 |
2 9
|
ressbas2 |
|- ( S C_ ( Base ` W ) -> S = ( Base ` X ) ) |
19 |
17 18
|
syl |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> S = ( Base ` X ) ) |
20 |
15 19
|
sseqtrd |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ran F C_ ( Base ` X ) ) |
21 |
20
|
adantr |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F : dom F --> ( Base ` W ) ) -> ran F C_ ( Base ` X ) ) |
22 |
|
df-f |
|- ( F : dom F --> ( Base ` X ) <-> ( F Fn dom F /\ ran F C_ ( Base ` X ) ) ) |
23 |
14 21 22
|
sylanbrc |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F : dom F --> ( Base ` W ) ) -> F : dom F --> ( Base ` X ) ) |
24 |
12 23
|
impbida |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ( F : dom F --> ( Base ` X ) <-> F : dom F --> ( Base ` W ) ) ) |
25 |
24
|
adantr |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( F : dom F --> ( Base ` X ) <-> F : dom F --> ( Base ` W ) ) ) |
26 |
|
simpl2 |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> S e. U ) |
27 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
28 |
2 27
|
resssca |
|- ( S e. U -> ( Scalar ` W ) = ( Scalar ` X ) ) |
29 |
28
|
eqcomd |
|- ( S e. U -> ( Scalar ` X ) = ( Scalar ` W ) ) |
30 |
26 29
|
syl |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
31 |
30
|
fveq2d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` W ) ) ) |
32 |
30
|
fveq2d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( 0g ` ( Scalar ` X ) ) = ( 0g ` ( Scalar ` W ) ) ) |
33 |
32
|
sneqd |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> { ( 0g ` ( Scalar ` X ) ) } = { ( 0g ` ( Scalar ` W ) ) } ) |
34 |
31 33
|
difeq12d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) = ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
35 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
36 |
2 35
|
ressvsca |
|- ( S e. U -> ( .s ` W ) = ( .s ` X ) ) |
37 |
36
|
eqcomd |
|- ( S e. U -> ( .s ` X ) = ( .s ` W ) ) |
38 |
26 37
|
syl |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( .s ` X ) = ( .s ` W ) ) |
39 |
38
|
oveqd |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( k ( .s ` X ) ( F ` x ) ) = ( k ( .s ` W ) ( F ` x ) ) ) |
40 |
|
simpl1 |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> W e. LMod ) |
41 |
|
imassrn |
|- ( F " ( dom F \ { x } ) ) C_ ran F |
42 |
|
simpl3 |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ran F C_ S ) |
43 |
41 42
|
sstrid |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( F " ( dom F \ { x } ) ) C_ S ) |
44 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
45 |
|
eqid |
|- ( LSpan ` X ) = ( LSpan ` X ) |
46 |
2 44 45 1
|
lsslsp |
|- ( ( W e. LMod /\ S e. U /\ ( F " ( dom F \ { x } ) ) C_ S ) -> ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) = ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) ) |
47 |
40 26 43 46
|
syl3anc |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) = ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) ) |
48 |
47
|
eqcomd |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) = ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) |
49 |
39 48
|
eleq12d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) <-> ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) |
50 |
49
|
notbid |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) <-> -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) |
51 |
34 50
|
raleqbidv |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( A. k e. ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) <-> A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) |
52 |
51
|
ralbidv |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( A. x e. dom F A. k e. ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) <-> A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) |
53 |
25 52
|
anbi12d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( ( F : dom F --> ( Base ` X ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) ) <-> ( F : dom F --> ( Base ` W ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
54 |
2
|
ovexi |
|- X e. _V |
55 |
54
|
a1i |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> X e. _V ) |
56 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
57 |
|
eqid |
|- ( .s ` X ) = ( .s ` X ) |
58 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
59 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
60 |
|
eqid |
|- ( 0g ` ( Scalar ` X ) ) = ( 0g ` ( Scalar ` X ) ) |
61 |
56 57 45 58 59 60
|
islindf |
|- ( ( X e. _V /\ F e. _V ) -> ( F LIndF X <-> ( F : dom F --> ( Base ` X ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
62 |
55 61
|
sylan |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( F LIndF X <-> ( F : dom F --> ( Base ` X ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` X ) ) \ { ( 0g ` ( Scalar ` X ) ) } ) -. ( k ( .s ` X ) ( F ` x ) ) e. ( ( LSpan ` X ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
63 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
64 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
65 |
9 35 44 27 63 64
|
islindf |
|- ( ( W e. LMod /\ F e. _V ) -> ( F LIndF W <-> ( F : dom F --> ( Base ` W ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
66 |
65
|
3ad2antl1 |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( F LIndF W <-> ( F : dom F --> ( Base ` W ) /\ A. x e. dom F A. k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) -. ( k ( .s ` W ) ( F ` x ) ) e. ( ( LSpan ` W ) ` ( F " ( dom F \ { x } ) ) ) ) ) ) |
67 |
53 62 66
|
3bitr4d |
|- ( ( ( W e. LMod /\ S e. U /\ ran F C_ S ) /\ F e. _V ) -> ( F LIndF X <-> F LIndF W ) ) |
68 |
67
|
ex |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ( F e. _V -> ( F LIndF X <-> F LIndF W ) ) ) |
69 |
5 7 68
|
pm5.21ndd |
|- ( ( W e. LMod /\ S e. U /\ ran F C_ S ) -> ( F LIndF X <-> F LIndF W ) ) |