Step |
Hyp |
Ref |
Expression |
1 |
|
lsslindf.u |
|- U = ( LSubSp ` W ) |
2 |
|
lsslindf.x |
|- X = ( W |`s S ) |
3 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
4 |
3 1
|
lssss |
|- ( S e. U -> S C_ ( Base ` W ) ) |
5 |
2 3
|
ressbas2 |
|- ( S C_ ( Base ` W ) -> S = ( Base ` X ) ) |
6 |
4 5
|
syl |
|- ( S e. U -> S = ( Base ` X ) ) |
7 |
6
|
3ad2ant2 |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> S = ( Base ` X ) ) |
8 |
7
|
sseq2d |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F C_ S <-> F C_ ( Base ` X ) ) ) |
9 |
4
|
3ad2ant2 |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> S C_ ( Base ` W ) ) |
10 |
|
sstr2 |
|- ( F C_ S -> ( S C_ ( Base ` W ) -> F C_ ( Base ` W ) ) ) |
11 |
9 10
|
mpan9 |
|- ( ( ( W e. LMod /\ S e. U /\ F C_ S ) /\ F C_ S ) -> F C_ ( Base ` W ) ) |
12 |
|
simpl3 |
|- ( ( ( W e. LMod /\ S e. U /\ F C_ S ) /\ F C_ ( Base ` W ) ) -> F C_ S ) |
13 |
11 12
|
impbida |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F C_ S <-> F C_ ( Base ` W ) ) ) |
14 |
8 13
|
bitr3d |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F C_ ( Base ` X ) <-> F C_ ( Base ` W ) ) ) |
15 |
|
rnresi |
|- ran ( _I |` F ) = F |
16 |
15
|
sseq1i |
|- ( ran ( _I |` F ) C_ S <-> F C_ S ) |
17 |
1 2
|
lsslindf |
|- ( ( W e. LMod /\ S e. U /\ ran ( _I |` F ) C_ S ) -> ( ( _I |` F ) LIndF X <-> ( _I |` F ) LIndF W ) ) |
18 |
16 17
|
syl3an3br |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( ( _I |` F ) LIndF X <-> ( _I |` F ) LIndF W ) ) |
19 |
14 18
|
anbi12d |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( ( F C_ ( Base ` X ) /\ ( _I |` F ) LIndF X ) <-> ( F C_ ( Base ` W ) /\ ( _I |` F ) LIndF W ) ) ) |
20 |
2
|
ovexi |
|- X e. _V |
21 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
22 |
21
|
islinds |
|- ( X e. _V -> ( F e. ( LIndS ` X ) <-> ( F C_ ( Base ` X ) /\ ( _I |` F ) LIndF X ) ) ) |
23 |
20 22
|
mp1i |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F e. ( LIndS ` X ) <-> ( F C_ ( Base ` X ) /\ ( _I |` F ) LIndF X ) ) ) |
24 |
3
|
islinds |
|- ( W e. LMod -> ( F e. ( LIndS ` W ) <-> ( F C_ ( Base ` W ) /\ ( _I |` F ) LIndF W ) ) ) |
25 |
24
|
3ad2ant1 |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F e. ( LIndS ` W ) <-> ( F C_ ( Base ` W ) /\ ( _I |` F ) LIndF W ) ) ) |
26 |
19 23 25
|
3bitr4d |
|- ( ( W e. LMod /\ S e. U /\ F C_ S ) -> ( F e. ( LIndS ` X ) <-> F e. ( LIndS ` W ) ) ) |