Metamath Proof Explorer


Theorem lindsmm2

Description: The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lindfmm.b B = Base S
lindfmm.c C = Base T
Assertion lindsmm2 G S LMHom T G : B 1-1 C F LIndS S G F LIndS T

Proof

Step Hyp Ref Expression
1 lindfmm.b B = Base S
2 lindfmm.c C = Base T
3 simp3 G S LMHom T G : B 1-1 C F LIndS S F LIndS S
4 1 linds1 F LIndS S F B
5 1 2 lindsmm G S LMHom T G : B 1-1 C F B F LIndS S G F LIndS T
6 4 5 syl3an3 G S LMHom T G : B 1-1 C F LIndS S F LIndS S G F LIndS T
7 3 6 mpbid G S LMHom T G : B 1-1 C F LIndS S G F LIndS T