Metamath Proof Explorer


Theorem lindsmm2

Description: The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lindfmm.b B=BaseS
lindfmm.c C=BaseT
Assertion lindsmm2 GSLMHomTG:B1-1CFLIndSSGFLIndST

Proof

Step Hyp Ref Expression
1 lindfmm.b B=BaseS
2 lindfmm.c C=BaseT
3 simp3 GSLMHomTG:B1-1CFLIndSSFLIndSS
4 1 linds1 FLIndSSFB
5 1 2 lindsmm GSLMHomTG:B1-1CFBFLIndSSGFLIndST
6 4 5 syl3an3 GSLMHomTG:B1-1CFLIndSSFLIndSSGFLIndST
7 3 6 mpbid GSLMHomTG:B1-1CFLIndSSGFLIndST