Step |
Hyp |
Ref |
Expression |
1 |
|
lindfmm.b |
|- B = ( Base ` S ) |
2 |
|
lindfmm.c |
|- C = ( Base ` T ) |
3 |
|
simp3 |
|- ( ( G e. ( S LMHom T ) /\ G : B -1-1-> C /\ F e. ( LIndS ` S ) ) -> F e. ( LIndS ` S ) ) |
4 |
1
|
linds1 |
|- ( F e. ( LIndS ` S ) -> F C_ B ) |
5 |
1 2
|
lindsmm |
|- ( ( G e. ( S LMHom T ) /\ G : B -1-1-> C /\ F C_ B ) -> ( F e. ( LIndS ` S ) <-> ( G " F ) e. ( LIndS ` T ) ) ) |
6 |
4 5
|
syl3an3 |
|- ( ( G e. ( S LMHom T ) /\ G : B -1-1-> C /\ F e. ( LIndS ` S ) ) -> ( F e. ( LIndS ` S ) <-> ( G " F ) e. ( LIndS ` T ) ) ) |
7 |
3 6
|
mpbid |
|- ( ( G e. ( S LMHom T ) /\ G : B -1-1-> C /\ F e. ( LIndS ` S ) ) -> ( G " F ) e. ( LIndS ` T ) ) |