Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
2 |
|
elznn0nn |
⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) |
3 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
5 |
4
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
6 |
|
expaddzlem |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
7 |
6
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
8 |
5 7
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
9 |
|
expaddzlem |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 + 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
10 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
12 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
14 |
11 13
|
addcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
15 |
14
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 𝐴 ↑ ( 𝑁 + 𝑀 ) ) ) |
16 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
17 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
18 |
16 10 17
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
19 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
20 |
13
|
negnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
21 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |
22 |
21
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → - 𝑁 ∈ ℕ0 ) |
23 |
|
nn0negz |
⊢ ( - 𝑁 ∈ ℕ0 → - - 𝑁 ∈ ℤ ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → - - 𝑁 ∈ ℤ ) |
25 |
20 24
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
26 |
|
expclz |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
27 |
16 19 25 26
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
28 |
18 27
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
29 |
9 15 28
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
30 |
29
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑀 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
31 |
30
|
impancom |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
32 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑀 ∈ ℂ ) |
34 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) |
35 |
34
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
36 |
33 35
|
negdid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - ( 𝑀 + 𝑁 ) = ( - 𝑀 + - 𝑁 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) = ( 𝐴 ↑ ( - 𝑀 + - 𝑁 ) ) ) |
38 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
39 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℕ ) |
40 |
39
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℕ0 ) |
41 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ ) |
42 |
41
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
43 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - 𝑀 + - 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) |
44 |
38 40 42 43
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( - 𝑀 + - 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) |
45 |
37 44
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) ) |
47 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
48 |
47
|
oveq1i |
⊢ ( ( 1 · 1 ) / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) |
49 |
46 48
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( ( 1 · 1 ) / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) ) |
50 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
51 |
38 40 50
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
52 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ≠ 0 ) |
53 |
40
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑀 ∈ ℤ ) |
54 |
|
expne0i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑀 ∈ ℤ ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
55 |
38 52 53 54
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
56 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) |
57 |
38 42 56
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) |
58 |
42
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
59 |
|
expne0i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) |
60 |
38 52 58 59
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) |
61 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
62 |
|
divmuldiv |
⊢ ( ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ) ∧ ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) ∧ ( ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) ) ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( ( 1 · 1 ) / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) ) |
63 |
61 61 62
|
mpanl12 |
⊢ ( ( ( ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) ∧ ( ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( ( 1 · 1 ) / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) ) |
64 |
51 55 57 60 63
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( ( 1 · 1 ) / ( ( 𝐴 ↑ - 𝑀 ) · ( 𝐴 ↑ - 𝑁 ) ) ) ) |
65 |
49 64
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) ) |
66 |
33 35
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑀 + 𝑁 ) ∈ ℂ ) |
67 |
40 42
|
nn0addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑀 + - 𝑁 ) ∈ ℕ0 ) |
68 |
36 67
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
69 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℂ ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) |
70 |
38 66 68 69
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) |
71 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
72 |
38 33 40 71
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
73 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
74 |
38 35 42 73
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
75 |
72 74
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) ) |
76 |
65 70 75
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
77 |
76
|
3expia |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
78 |
31 77
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
79 |
8 78
|
jaod |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℕ0 ∨ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ) ) → ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
80 |
2 79
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
81 |
1 80
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
82 |
81
|
impr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |