| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zringlpirlem.i |  | 
						
							| 2 |  | zringlpirlem.n0 |  | 
						
							| 3 |  | simplr |  | 
						
							| 4 |  | eleq1 |  | 
						
							| 5 | 3 4 | syl5ibrcom |  | 
						
							| 6 |  | zsubrg |  | 
						
							| 7 |  | subrgsubg |  | 
						
							| 8 | 6 7 | ax-mp |  | 
						
							| 9 |  | zringbas |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 9 10 | lidlss |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 12 | sselda |  | 
						
							| 14 |  | df-zring |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 14 15 16 | subginv |  | 
						
							| 18 | 8 13 17 | sylancr |  | 
						
							| 19 | 13 | zcnd |  | 
						
							| 20 |  | cnfldneg |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 18 21 | eqtr3d |  | 
						
							| 23 |  | zringring |  | 
						
							| 24 | 1 | adantr |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 10 16 | lidlnegcl |  | 
						
							| 27 | 23 24 25 26 | mp3an2i |  | 
						
							| 28 | 22 27 | eqeltrrd |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | eleq1 |  | 
						
							| 31 | 29 30 | syl5ibrcom |  | 
						
							| 32 | 13 | zred |  | 
						
							| 33 | 32 | absord |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 5 31 34 | mpjaod |  | 
						
							| 36 |  | nnabscl |  | 
						
							| 37 | 13 36 | sylan |  | 
						
							| 38 | 35 37 | elind |  | 
						
							| 39 | 38 | ne0d |  | 
						
							| 40 |  | zring0 |  | 
						
							| 41 | 10 40 | lidlnz |  | 
						
							| 42 | 23 1 2 41 | mp3an2i |  | 
						
							| 43 | 39 42 | r19.29a |  |