Metamath Proof Explorer


Theorem nnabscl

Description: The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion nnabscl NN0N

Proof

Step Hyp Ref Expression
1 zabscl NN
2 1 adantr NN0N
3 zcn NN
4 absgt0 NN00<N
5 3 4 syl NN00<N
6 5 biimpa NN00<N
7 elnnz NN0<N
8 2 6 7 sylanbrc NN0N