Metamath Proof Explorer


Theorem nnabscl

Description: The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion nnabscl N N 0 N

Proof

Step Hyp Ref Expression
1 zabscl N N
2 1 adantr N N 0 N
3 zcn N N
4 absgt0 N N 0 0 < N
5 3 4 syl N N 0 0 < N
6 5 biimpa N N 0 0 < N
7 elnnz N N 0 < N
8 2 6 7 sylanbrc N N 0 N