Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | zringlpir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring | |
|
2 | eleq1 | |
|
3 | simpl | |
|
4 | simpr | |
|
5 | eqid | |
|
6 | 3 4 5 | zringlpirlem2 | |
7 | simpll | |
|
8 | simplr | |
|
9 | simpr | |
|
10 | 7 8 5 9 | zringlpirlem3 | |
11 | 10 | ralrimiva | |
12 | breq1 | |
|
13 | 12 | ralbidv | |
14 | 13 | rspcev | |
15 | 6 11 14 | syl2anc | |
16 | eqid | |
|
17 | eqid | |
|
18 | dvdsrzring | |
|
19 | 16 17 18 | lpigen | |
20 | 1 19 | mpan | |
21 | 20 | adantr | |
22 | 15 21 | mpbird | |
23 | zring0 | |
|
24 | 17 23 | lpi0 | |
25 | 1 24 | mp1i | |
26 | 2 22 25 | pm2.61ne | |
27 | 26 | ssriv | |
28 | 17 16 | islpir2 | |
29 | 1 27 28 | mpbir2an | |