Metamath Proof Explorer


Theorem zringlpir

Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Assertion zringlpir ringLPIR

Proof

Step Hyp Ref Expression
1 zringring ringRing
2 eleq1 x=0xLPIdealring0LPIdealring
3 simpl xLIdealringx0xLIdealring
4 simpr xLIdealringx0x0
5 eqid supx<=supx<
6 3 4 5 zringlpirlem2 xLIdealringx0supx<x
7 simpll xLIdealringx0zxxLIdealring
8 simplr xLIdealringx0zxx0
9 simpr xLIdealringx0zxzx
10 7 8 5 9 zringlpirlem3 xLIdealringx0zxsupx<z
11 10 ralrimiva xLIdealringx0zxsupx<z
12 breq1 y=supx<yzsupx<z
13 12 ralbidv y=supx<zxyzzxsupx<z
14 13 rspcev supx<xzxsupx<zyxzxyz
15 6 11 14 syl2anc xLIdealringx0yxzxyz
16 eqid LIdealring=LIdealring
17 eqid LPIdealring=LPIdealring
18 dvdsrzring =rring
19 16 17 18 lpigen ringRingxLIdealringxLPIdealringyxzxyz
20 1 19 mpan xLIdealringxLPIdealringyxzxyz
21 20 adantr xLIdealringx0xLPIdealringyxzxyz
22 15 21 mpbird xLIdealringx0xLPIdealring
23 zring0 0=0ring
24 17 23 lpi0 ringRing0LPIdealring
25 1 24 mp1i xLIdealring0LPIdealring
26 2 22 25 pm2.61ne xLIdealringxLPIdealring
27 26 ssriv LIdealringLPIdealring
28 17 16 islpir2 ringLPIRringRingLIdealringLPIdealring
29 1 27 28 mpbir2an ringLPIR