Metamath Proof Explorer


Theorem islpir2

Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpiss.u U=LIdealR
Assertion islpir2 RLPIRRRingUP

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpiss.u U=LIdealR
3 1 2 islpir RLPIRRRingU=P
4 eqss U=PUPPU
5 1 2 lpiss RRingPU
6 5 biantrud RRingUPUPPU
7 4 6 bitr4id RRingU=PUP
8 7 pm5.32i RRingU=PRRingUP
9 3 8 bitri RLPIRRRingUP