Metamath Proof Explorer


Theorem islpir2

Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P = LPIdeal R
lpiss.u U = LIdeal R
Assertion islpir2 R LPIR R Ring U P

Proof

Step Hyp Ref Expression
1 lpival.p P = LPIdeal R
2 lpiss.u U = LIdeal R
3 1 2 islpir R LPIR R Ring U = P
4 eqss U = P U P P U
5 1 2 lpiss R Ring P U
6 5 biantrud R Ring U P U P P U
7 4 6 bitr4id R Ring U = P U P
8 7 pm5.32i R Ring U = P R Ring U P
9 3 8 bitri R LPIR R Ring U P