Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | zringndrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ne2 | |
|
2 | 1 | nesymi | |
3 | 2re | |
|
4 | 0le2 | |
|
5 | absid | |
|
6 | 3 4 5 | mp2an | |
7 | 6 | eqeq1i | |
8 | 2 7 | mtbir | |
9 | 8 | intnan | |
10 | zringunit | |
|
11 | 9 10 | mtbir | |
12 | zringbas | |
|
13 | eqid | |
|
14 | zring0 | |
|
15 | 12 13 14 | isdrng | |
16 | 2z | |
|
17 | 2ne0 | |
|
18 | eldifsn | |
|
19 | 16 17 18 | mpbir2an | |
20 | id | |
|
21 | 19 20 | eleqtrrid | |
22 | 15 21 | simplbiim | |
23 | 11 22 | mto | |
24 | 23 | nelir | |