Metamath Proof Explorer


Theorem zringndrg

Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)

Ref Expression
Assertion zringndrg ringDivRing

Proof

Step Hyp Ref Expression
1 1ne2 12
2 1 nesymi ¬2=1
3 2re 2
4 0le2 02
5 absid 2022=2
6 3 4 5 mp2an 2=2
7 6 eqeq1i 2=12=1
8 2 7 mtbir ¬2=1
9 8 intnan ¬22=1
10 zringunit 2Unitring22=1
11 9 10 mtbir ¬2Unitring
12 zringbas =Basering
13 eqid Unitring=Unitring
14 zring0 0=0ring
15 12 13 14 isdrng ringDivRingringRingUnitring=0
16 2z 2
17 2ne0 20
18 eldifsn 20220
19 16 17 18 mpbir2an 20
20 id Unitring=0Unitring=0
21 19 20 eleqtrrid Unitring=02Unitring
22 15 21 simplbiim ringDivRing2Unitring
23 11 22 mto ¬ringDivRing
24 23 nelir ringDivRing