Metamath Proof Explorer


Theorem zringlpirlem3

Description: Lemma for zringlpir . All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Hypotheses zringlpirlem.i φ I LIdeal ring
zringlpirlem.n0 φ I 0
zringlpirlem.g G = sup I <
zringlpirlem.x φ X I
Assertion zringlpirlem3 φ G X

Proof

Step Hyp Ref Expression
1 zringlpirlem.i φ I LIdeal ring
2 zringlpirlem.n0 φ I 0
3 zringlpirlem.g G = sup I <
4 zringlpirlem.x φ X I
5 zringbas = Base ring
6 eqid LIdeal ring = LIdeal ring
7 5 6 lidlss I LIdeal ring I
8 1 7 syl φ I
9 8 4 sseldd φ X
10 9 zred φ X
11 inss2 I
12 nnuz = 1
13 11 12 sseqtri I 1
14 1 2 zringlpirlem1 φ I
15 infssuzcl I 1 I sup I < I
16 13 14 15 sylancr φ sup I < I
17 3 16 eqeltrid φ G I
18 17 elin2d φ G
19 18 nnrpd φ G +
20 modlt X G + X mod G < G
21 10 19 20 syl2anc φ X mod G < G
22 9 18 zmodcld φ X mod G 0
23 22 nn0red φ X mod G
24 18 nnred φ G
25 23 24 ltnled φ X mod G < G ¬ G X mod G
26 21 25 mpbid φ ¬ G X mod G
27 9 zcnd φ X
28 18 nncnd φ G
29 10 18 nndivred φ X G
30 29 flcld φ X G
31 30 zcnd φ X G
32 28 31 mulcld φ G X G
33 27 32 negsubd φ X + G X G = X G X G
34 30 znegcld φ X G
35 34 zcnd φ X G
36 35 28 mulcomd φ X G G = G X G
37 28 31 mulneg2d φ G X G = G X G
38 36 37 eqtrd φ X G G = G X G
39 38 oveq2d φ X + X G G = X + G X G
40 modval X G + X mod G = X G X G
41 10 19 40 syl2anc φ X mod G = X G X G
42 33 39 41 3eqtr4rd φ X mod G = X + X G G
43 zringring ring Ring
44 43 a1i φ ring Ring
45 1 2 3 zringlpirlem2 φ G I
46 zringmulr × = ring
47 6 5 46 lidlmcl ring Ring I LIdeal ring X G G I X G G I
48 44 1 34 45 47 syl22anc φ X G G I
49 zringplusg + = + ring
50 6 49 lidlacl ring Ring I LIdeal ring X I X G G I X + X G G I
51 44 1 4 48 50 syl22anc φ X + X G G I
52 42 51 eqeltrd φ X mod G I
53 52 adantr φ X mod G X mod G I
54 simpr φ X mod G X mod G
55 53 54 elind φ X mod G X mod G I
56 infssuzle I 1 X mod G I sup I < X mod G
57 13 55 56 sylancr φ X mod G sup I < X mod G
58 3 57 eqbrtrid φ X mod G G X mod G
59 26 58 mtand φ ¬ X mod G
60 elnn0 X mod G 0 X mod G X mod G = 0
61 22 60 sylib φ X mod G X mod G = 0
62 orel1 ¬ X mod G X mod G X mod G = 0 X mod G = 0
63 59 61 62 sylc φ X mod G = 0
64 dvdsval3 G X G X X mod G = 0
65 18 9 64 syl2anc φ G X X mod G = 0
66 63 65 mpbird φ G X