Metamath Proof Explorer


Theorem infssuzcl

Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzcl SMSsupS<S

Proof

Step Hyp Ref Expression
1 uzssz M
2 zssre
3 1 2 sstri M
4 sstr SMMS
5 3 4 mpan2 SMS
6 uzwo SMSjSkSjk
7 lbinfcl SjSkSjksupS<S
8 5 6 7 syl2an2r SMSsupS<S