Metamath Proof Explorer


Theorem infssuzcl

Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzcl ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 uzssz ( ℤ𝑀 ) ⊆ ℤ
2 zssre ℤ ⊆ ℝ
3 1 2 sstri ( ℤ𝑀 ) ⊆ ℝ
4 sstr ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ ( ℤ𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ )
5 3 4 mpan2 ( 𝑆 ⊆ ( ℤ𝑀 ) → 𝑆 ⊆ ℝ )
6 uzwo ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 )
7 lbinfcl ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 )
8 5 6 7 syl2an2r ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 )