Metamath Proof Explorer


Theorem ublbneg

Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion ublbneg xyAyxxyz|zAxy

Proof

Step Hyp Ref Expression
1 breq1 b=ybaya
2 1 cbvralvw bAbayAya
3 2 rexbii abAbaayAya
4 breq2 a=xyayx
5 4 ralbidv a=xyAyayAyx
6 5 cbvrexvw ayAyaxyAyx
7 3 6 bitri abAbaxyAyx
8 renegcl aa
9 elrabi yz|zAy
10 negeq z=yz=y
11 10 eleq1d z=yzAyA
12 11 elrab3 yyz|zAyA
13 12 biimpd yyz|zAyA
14 9 13 mpcom yz|zAyA
15 breq1 b=ybaya
16 15 rspcv yAbAbaya
17 14 16 syl yz|zAbAbaya
18 17 adantl ayz|zAbAbaya
19 lenegcon1 ayayya
20 9 19 sylan2 ayz|zAayya
21 18 20 sylibrd ayz|zAbAbaay
22 21 ralrimdva abAbayz|zAay
23 breq1 x=axyay
24 23 ralbidv x=ayz|zAxyyz|zAay
25 24 rspcev ayz|zAayxyz|zAxy
26 8 22 25 syl6an abAbaxyz|zAxy
27 26 rexlimiv abAbaxyz|zAxy
28 7 27 sylbir xyAyxxyz|zAxy