Metamath Proof Explorer


Theorem eqreznegel

Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion eqreznegel Az|zA=z|zA

Proof

Step Hyp Ref Expression
1 ssel AwAw
2 recn ww
3 negid ww+w=0
4 0z 0
5 3 4 eqeltrdi ww+w
6 5 pm4.71i www+w
7 zrevaddcl www+ww
8 6 7 bitrid www
9 2 8 imbitrid www
10 1 9 syl6 AwAww
11 10 impcomd AwwAw
12 simpr wwAwA
13 11 12 jca2 AwwAwwA
14 zre ww
15 14 anim1i wwAwwA
16 13 15 impbid1 AwwAwwA
17 negeq z=wz=w
18 17 eleq1d z=wzAwA
19 18 elrab wz|zAwwA
20 18 elrab wz|zAwwA
21 16 19 20 3bitr4g Awz|zAwz|zA
22 21 eqrdv Az|zA=z|zA