| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel | ⊢ ( 𝐴  ⊆  ℤ  →  ( - 𝑤  ∈  𝐴  →  - 𝑤  ∈  ℤ ) ) | 
						
							| 2 |  | recn | ⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℂ ) | 
						
							| 3 |  | negid | ⊢ ( 𝑤  ∈  ℂ  →  ( 𝑤  +  - 𝑤 )  =  0 ) | 
						
							| 4 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 5 | 3 4 | eqeltrdi | ⊢ ( 𝑤  ∈  ℂ  →  ( 𝑤  +  - 𝑤 )  ∈  ℤ ) | 
						
							| 6 | 5 | pm4.71i | ⊢ ( 𝑤  ∈  ℂ  ↔  ( 𝑤  ∈  ℂ  ∧  ( 𝑤  +  - 𝑤 )  ∈  ℤ ) ) | 
						
							| 7 |  | zrevaddcl | ⊢ ( - 𝑤  ∈  ℤ  →  ( ( 𝑤  ∈  ℂ  ∧  ( 𝑤  +  - 𝑤 )  ∈  ℤ )  ↔  𝑤  ∈  ℤ ) ) | 
						
							| 8 | 6 7 | bitrid | ⊢ ( - 𝑤  ∈  ℤ  →  ( 𝑤  ∈  ℂ  ↔  𝑤  ∈  ℤ ) ) | 
						
							| 9 | 2 8 | imbitrid | ⊢ ( - 𝑤  ∈  ℤ  →  ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℤ ) ) | 
						
							| 10 | 1 9 | syl6 | ⊢ ( 𝐴  ⊆  ℤ  →  ( - 𝑤  ∈  𝐴  →  ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℤ ) ) ) | 
						
							| 11 | 10 | impcomd | ⊢ ( 𝐴  ⊆  ℤ  →  ( ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 )  →  𝑤  ∈  ℤ ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 )  →  - 𝑤  ∈  𝐴 ) | 
						
							| 13 | 11 12 | jca2 | ⊢ ( 𝐴  ⊆  ℤ  →  ( ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 ) ) ) | 
						
							| 14 |  | zre | ⊢ ( 𝑤  ∈  ℤ  →  𝑤  ∈  ℝ ) | 
						
							| 15 | 14 | anim1i | ⊢ ( ( 𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 ) ) | 
						
							| 16 | 13 15 | impbid1 | ⊢ ( 𝐴  ⊆  ℤ  →  ( ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 )  ↔  ( 𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 ) ) ) | 
						
							| 17 |  | negeq | ⊢ ( 𝑧  =  𝑤  →  - 𝑧  =  - 𝑤 ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑧  =  𝑤  →  ( - 𝑧  ∈  𝐴  ↔  - 𝑤  ∈  𝐴 ) ) | 
						
							| 19 | 18 | elrab | ⊢ ( 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ↔  ( 𝑤  ∈  ℝ  ∧  - 𝑤  ∈  𝐴 ) ) | 
						
							| 20 | 18 | elrab | ⊢ ( 𝑤  ∈  { 𝑧  ∈  ℤ  ∣  - 𝑧  ∈  𝐴 }  ↔  ( 𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 ) ) | 
						
							| 21 | 16 19 20 | 3bitr4g | ⊢ ( 𝐴  ⊆  ℤ  →  ( 𝑤  ∈  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  ↔  𝑤  ∈  { 𝑧  ∈  ℤ  ∣  - 𝑧  ∈  𝐴 } ) ) | 
						
							| 22 | 21 | eqrdv | ⊢ ( 𝐴  ⊆  ℤ  →  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  =  { 𝑧  ∈  ℤ  ∣  - 𝑧  ∈  𝐴 } ) |