| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ |
| 2 |
|
negn0 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ) |
| 3 |
|
ublbneg |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) |
| 4 |
|
infrenegsup |
⊢ ( ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) |
| 5 |
1 2 3 4
|
mp3an3an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) |
| 6 |
5
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) ) |
| 7 |
|
elrabi |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } → 𝑥 ∈ ℝ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ) → 𝑥 ∈ ℝ ) |
| 9 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 10 |
|
negeq |
⊢ ( 𝑤 = 𝑥 → - 𝑤 = - 𝑥 ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 12 |
11
|
elrab3 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ) ) |
| 13 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
| 14 |
|
negeq |
⊢ ( 𝑧 = - 𝑥 → - 𝑧 = - - 𝑥 ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑧 = - 𝑥 → ( - 𝑧 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 16 |
15
|
elrab3 |
⊢ ( - 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 17 |
13 16
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 18 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 19 |
18
|
negnegd |
⊢ ( 𝑥 ∈ ℝ → - - 𝑥 = 𝑥 ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑥 ∈ ℝ → ( - - 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 21 |
12 17 20
|
3bitrd |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ 𝑥 ∈ 𝐴 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } ↔ 𝑥 ∈ 𝐴 ) ) |
| 23 |
8 9 22
|
eqrdav |
⊢ ( 𝐴 ⊆ ℝ → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } = 𝐴 ) |
| 24 |
23
|
supeq1d |
⊢ ( 𝐴 ⊆ ℝ → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 26 |
25
|
negeqd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 27 |
6 26
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 28 |
|
infrecl |
⊢ ( ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } 𝑥 ≤ 𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 29 |
1 2 3 28
|
mp3an3an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 30 |
29
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 31 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 32 |
|
recn |
⊢ ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ) |
| 33 |
|
recn |
⊢ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) |
| 34 |
|
negcon2 |
⊢ ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℂ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) |
| 35 |
32 33 34
|
syl2an |
⊢ ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) |
| 36 |
30 31 35
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) ) |
| 37 |
27 36
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |