Metamath Proof Explorer


Theorem supminf

Description: The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011) ( Revised by AV, 13-Sep-2020.)

Ref Expression
Assertion supminf ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ⊆ ℝ
2 negn0 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ≠ ∅ )
3 ublbneg ( ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } 𝑥𝑦 )
4 infrenegsup ( ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } 𝑥𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) )
5 1 2 3 4 mp3an3an ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) )
6 5 3impa ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) )
7 elrabi ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } → 𝑥 ∈ ℝ )
8 7 adantl ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } ) → 𝑥 ∈ ℝ )
9 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
10 negeq ( 𝑤 = 𝑥 → - 𝑤 = - 𝑥 )
11 10 eleq1d ( 𝑤 = 𝑥 → ( - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ) )
12 11 elrab3 ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } ↔ - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ) )
13 renegcl ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ )
14 negeq ( 𝑧 = - 𝑥 → - 𝑧 = - - 𝑥 )
15 14 eleq1d ( 𝑧 = - 𝑥 → ( - 𝑧𝐴 ↔ - - 𝑥𝐴 ) )
16 15 elrab3 ( - 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ↔ - - 𝑥𝐴 ) )
17 13 16 syl ( 𝑥 ∈ ℝ → ( - 𝑥 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ↔ - - 𝑥𝐴 ) )
18 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
19 18 negnegd ( 𝑥 ∈ ℝ → - - 𝑥 = 𝑥 )
20 19 eleq1d ( 𝑥 ∈ ℝ → ( - - 𝑥𝐴𝑥𝐴 ) )
21 12 17 20 3bitrd ( 𝑥 ∈ ℝ → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } ↔ 𝑥𝐴 ) )
22 21 adantl ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } ↔ 𝑥𝐴 ) )
23 8 9 22 eqrdav ( 𝐴 ⊆ ℝ → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } = 𝐴 )
24 23 supeq1d ( 𝐴 ⊆ ℝ → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) )
25 24 3ad2ant1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) )
26 25 negeqd ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) )
27 6 26 eqtrd ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) )
28 infrecl ( ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ⊆ ℝ ∧ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } 𝑥𝑦 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℝ )
29 1 2 3 28 mp3an3an ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℝ )
30 29 3impa ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℝ )
31 suprcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
32 recn ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℝ → inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℂ )
33 recn ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ )
34 negcon2 ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℂ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℂ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ) )
35 32 33 34 syl2an ( ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ∈ ℝ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ) )
36 30 31 35 syl2anc ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → ( inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) ) )
37 27 36 mpbid ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑧 ∈ ℝ ∣ - 𝑧𝐴 } , ℝ , < ) )