Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
Assertion | supeq1d | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
2 | supeq1 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) ) |