Metamath Proof Explorer


Theorem supeq1d

Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1d.1 ( 𝜑𝐵 = 𝐶 )
Assertion supeq1d ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 supeq1d.1 ( 𝜑𝐵 = 𝐶 )
2 supeq1 ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) )
3 1 2 syl ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , 𝑅 ) )