Metamath Proof Explorer


Theorem supeq1d

Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1d.1 φB=C
Assertion supeq1d φsupBAR=supCAR

Proof

Step Hyp Ref Expression
1 supeq1d.1 φB=C
2 supeq1 B=CsupBAR=supCAR
3 1 2 syl φsupBAR=supCAR