Metamath Proof Explorer


Theorem supeq1d

Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1d.1 φ B = C
Assertion supeq1d φ sup B A R = sup C A R

Proof

Step Hyp Ref Expression
1 supeq1d.1 φ B = C
2 supeq1 B = C sup B A R = sup C A R
3 1 2 syl φ sup B A R = sup C A R