Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
supeq1d
Next ⟩
supeq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
supeq1d
Description:
Equality deduction for supremum.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypothesis
supeq1d.1
⊢
φ
→
B
=
C
Assertion
supeq1d
⊢
φ
→
sup
B
A
R
=
sup
C
A
R
Proof
Step
Hyp
Ref
Expression
1
supeq1d.1
⊢
φ
→
B
=
C
2
supeq1
⊢
B
=
C
→
sup
B
A
R
=
sup
C
A
R
3
1
2
syl
⊢
φ
→
sup
B
A
R
=
sup
C
A
R