Metamath Proof Explorer


Theorem infrecl

Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrecl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 1 a1i ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) → < Or ℝ )
3 infm3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
4 2 3 infcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑥𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ )